首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The radical anions of the compounds N1N, N3N and N5N , in which two naphthalen π-systems are separated by 1, 3 and 5 spirobonded cyclobutane rings, respectively, and tha tof the reference compound N1 , containing one naphthalene π-system and one cyclobutane ring, have been studied by ESR and ENDOR spectroscopy under a variety of experimental conditions. The intramolecular electrons spin transfer between the two π-moieties in N3N and N5N is slow on the hyperfine time-scale, irrespective of the applied conditions. It is also slow in N1N , except for media of high solvating power. In such media, with a slight reduction of N1N to its radical anion, a paramagnetic species is observed, the hyperfine data for which are consistent with N1N to its radical anion, a paramagnetic species is observed, the hyperfine data of which are consistent with N1N , undergoing a fast intramolecular electron spin tansfer. The ESR and ENDOR spectra of this species are superimposed on those characteristic of a slow transfer. It is suggested that the fast and slow transfer involve the syn- and anti-conformations, respectively, since the distance, r, between the two naphthalene π-systems of N1N is considerably shorter in the former than in the latter (r = 740 vs. 880 Pm for the distance between the centres of the π-systems). Glassy solutions of exhaustively reduced N1N display signals of the dianion triplet state, whereas no such signals are found for N3N and N5N . The zero-field splitting parameter, D , is 4.7 mT, corresponding to r ≈ 480 pm.  相似文献   

4.
The addition of the π–π stacking agent octafluorotoluene (OFT) resulted in up to a 50% reduction in monomer conversion after 24 h for atom transfer radical polymerization (ATRP) reactions of styrene, when performed at 85 °C with 1 eq of OFT compared with styrene in the initial reaction mixture. Monitoring the progress showed that the ATRP of styrene in the presence of either OFT or hexafluorobenzene (HFB) maintained a linear relationship between monomer conversion and number average molecular weights, while showing a first order rate dependence on monomer. The effects of π–π stacking on the KATRP could be overcome by using adjusting the redox activity of the metal‐ligand complex while maintaining reaction temperatures of 85 °C. Further experiments showed that nitroxide‐mediated polymerizations of St were affected to an identical extent by the presence of the π–π stacking agent HFB. The ATRP of pentafluorostyrene (PFSt) in the presence of π–π stackers benzene or toluene showed an increase in monomer conversion compared with reactions in their absence, consistent with Mn π–π stacking increasing the stability of the active radical. Interactions between the π–π stacking agents OFT and HFB and the aromatic groups in the ATRP of St or PFSt were verified by 1H NMR analysis. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
The 4 K ESR spectrum of silacyclobutane radical cation in perfluorocyclohexane consists mainly of a 43 G doublet hyperfine (hf) splitting due to one equatorial hydrogen at C(3). Upon warming, the doublet spectrum is reversibly changed into a 26 G triplet due to two equivalent methylene hydrogens in the same position together with a smaller triplet of 14 G due to THE =SiH2 hydrogens. The temperature-dependent spectra are successfully analyzed in terms of a ring-puckering motion of the σ-localized radical cation in which one of the C---Si bonds is elongated so as to give an asymmetrically distorted C1 structure.  相似文献   

6.
The nature and strength of the cation-π interactions between NH4^+ and toluene, p-cresol, or Me-indole were studied in terms of the topological properties of molecular charge density and binding energy decomposition. The results display that the diversity in the distribution pattern of bond and cage critical points reflects the profound influence of the number and nature of substituent on the electron density of the aromatic rings. On the other hand, the energy decomposition shows that dispersion and repulsive exchange forces play an important role in the organic cation (NH4^+)-π interaction, although the electrostatic and induction forces dominate the interaction. In addition, it is intriguing that there is an excellent correlation between the electrostatic energy and ellipticity at the bond critical point of the aromatic π systems, which would be helpful to further understand the electrostatic interaction in the cation-π complexes.  相似文献   

7.
Bulk polymerizations of methyl methacrylate (MMA) at 60°C initiated with 2,2′-azoisobutyronitrile are influenced by the presence of an organic π-donor such as tetrathiafulvalene (TTF). Upon addition of TTF, the ratio of weight- to number-average molecular weights w/n are significantly reduced and the thermal stability of the poly(methyl methacrylate) samples is increased. Kinetic investigations indicate that TTF acts as a retarder on the polymerization mechanism.  相似文献   

8.
9.
Extended Hückel calculations and qualitative MO have been used to analyze the EPR data relevant to the localization of the unpaired spin density in several paramagnetic niobocene complexes with σ-donor π-acceptors, acetylene, aldehyde, ketene, ketenimine, and carbon disulfide.  相似文献   

10.
Radical anions of benzo[2.2]paracyclophane (V) and its 1,2,12,12,14,15,17,18-octadeuterio derivative (V-d8) in three ethereal solvents (DME, THF and MTHF) and in the temperature range of ?90 to ?50° have been studied by ESR. and ENDOR. spectroscopy. The resulting hyperfine data provide a detailed picture of the π-spin distribution in V · ? which is in full accord with expectation. In particular, it is noteworthy that the naphthalene moiety accommodates almost the entire π-spin population, as may be anticipated by the higher electron affinity of this π-system relative to benzene. The proton coupling constants for V · ? have been compared with those values for the radical anions of anti- and syn-[2.2](1,4)-naphthalenophanes (II and III, respectively) which were obtained under conditions of low frequency electron transfer between the two equivalent naphthalene moieties. Such a comparison corroborates the interpretation of the results reported previously for II · ? and III · ?.  相似文献   

11.
12.
Noncovalent interactions involving aromatic rings, such as π‐stacking and CH/π interactions, are central to many areas of modern chemistry. However, recent studies proved that aromaticity is not required for stacking interactions, since similar interaction energies were computed for several aromatic and aliphatic dimers. Herein, the nature and origin of π/π, σ/σ, and σ/π dispersion interactions has been investigated by using dispersion‐corrected density functional theory, energy decomposition analysis, and the recently developed noncovalent interaction (NCI) method. Our analysis shows that π/π and σ/σ stacking interactions are equally important for the benzene and cyclohexane dimers, explaining why both compounds have similar boiling points. Also, similar dispersion forces are found in the benzene???methane and cyclohexane???methane complexes. However, for systems larger than naphthalene, there are enhanced stacking interactions in the aromatic dimers adopting a parallel‐displaced configuration compared to the analogous saturated systems. Although dispersion plays a decisive role in stabilizing all the complexes, the origin of the π/π, σ/σ, and σ/π interactions is different. The NCI method reveals that the dispersion interactions between the hydrogen atoms are responsible for the surprisingly strong aliphatic interactions. Moreover, whereas σ/σ and σ/π interactions are local, the π/π stacking are inherently delocalized, which give rise to a non‐additive effect. These new types of dispersion interactions between saturated groups can be exploited in the rational design of novel carbon materials.  相似文献   

13.
Herein, we report a high‐level theoretical study (SCS‐RI‐MP2(full)/aug‐cc‐pVTZ) examining the stacking affinity of 1,3,5‐triethynylbenzene. The stacking properties of this compound are compared to those of benzene and 1,3,5‐trifluorobenzene. The results indicate that the ethynyl substituent improves the stacking affinity of the arene, since the binding energies for the stacked ethynyl‐substituted arene dimers are higher than those of both benzene and the fluoro‐substituted arene. This interesting behaviour has been studied by examining the energetics, geometries and electron charge density features of the complexes. A query in the Cambridge Structural Database returned several X‐ray crystal structures containing π–π stacking interactions of 1,3,5‐triethynylaryls that strongly agree with the theoretical results.  相似文献   

14.
In this study, a series of benzotriazole (BTz) and triphenylamine (TPA)‐based random copolymers; poly4‐(5‐(2‐dodecyl‐7‐methyl‐2H‐benzo[d][1,2,3]triazol‐4‐yl)thiophen‐2‐yl)‐N‐(4‐(5‐methylthiophen‐2‐yl)phenyl)‐N‐phenylaniline ( P1 ), poly4′‐(2‐dodecyl‐7‐methyl‐2H‐benzo[d][1,2,3]triazol‐4‐yl)‐N‐(4′‐methyl‐[1,1′‐biphenyl]‐4‐yl)‐N‐phenyl‐[1,1′‐biphenyl]‐4‐amine ( P2 ), and poly4‐(5′‐(2‐dodecyl‐7‐(5‐methylthiophen‐2‐yl)?2H‐benzo[d][1,2,3]triazol‐4‐yl)‐[2,2′‐bithiophen]‐5‐yl)‐N‐(4‐(5‐methylthiophen‐2‐yl)phenyl)‐N‐phenylaniline ( P3 ) were synthesized to investigate the effect of TPA unit and π‐bridges on electrochemical and spectroelectrochemical properties of corresponding polymers. The synthesis was carried out via Stille coupling for P1 , P3 , and Suzuki coupling for P2 . Electrochemical and spectral results showed that P1 has an ambipolar character, in other words it is both p‐type and n‐type dopable, whereas P2 and P3 have only p‐doping property. Effect of different π‐bridges and TPA unit on the HOMO and LUMO energy levels, switching time, and optical contrast were discussed. All polymers are promising materials for electrochromic devices. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 537–544  相似文献   

15.
The new triplesalophen ligand H6kruseBr was synthesized as a variation of the triplesalophen ligands H6baronR by replacing a phenyl by a methyl group at the terminal ketimine in order to allow closer contacts of trinuclear complexes due to less steric hindrance by the smaller methyl group. The ligand H6kruseBr was used to synthesize the trinuclear complex [(kruseBr)NiII3], which is insoluble in organic solvents despite the coordinating solvent pyridine. Recrystallization from pyridine results in the complex [(kruseBr){Ni2(Ni(py)2)}], which was characterized by single‐crystal X‐ray diffraction. Two NiII ions are four‐coordinate by the salophen‐like subunits while the third NiII ion is six‐coordinate by two additional pyridine donors. The analysis of the molecular and crystal structure in comparison to that of NiII3 complexes of (baronR)6– reveals that the methyl group in [(kruseBr){Ni2(Ni(py)2)}] results in less ligand folding and in closer contact distance of two NiII3 complexes by ππ interactions of 3.2 Å. This indicates that trinuclear complexes of H6kruseBr are more suitable than complexes of H6baronR as molecular building blocks for the anticipated synthesis of nonanuclear single‐molecule magnets.  相似文献   

16.
Herein, we address the question whether anion–π and cation–π interactions can take place simultaneously on the same aromatic surface. Covalently positioned carboxylate–guanidinium pairs on the surface of 4‐amino‐1,8‐naphthalimides are used as an example to explore push–pull chromophores as privileged platforms for such “ion pair–π” interactions. In antiparallel orientation with respect to the push–pull dipole, a bathochromic effect is observed. A red shift of 41 nm found in the least polar solvent is in good agreement with the 70 nm expected from theoretical calculations of ground and excited states. Decreasing shifts with solvent polarity, protonation, aggregation, and parallel carboxylate–guanidinium pairs imply that the intramolecular Stark effect from antiparallel ion pair–π interactions exceeds solvatochromic effects by far. Theoretical studies indicate that carboxylate–guanidinium pairs can also interact with the surfaces of π‐acidic naphthalenediimides and π‐basic pyrenes.  相似文献   

17.
We have designed and utilized a simple molecular recognition system to study the substituent effects in aromatic interactions. Recently, we showed that 3‐ and 3,5‐disubstituted benzoyl leucine diethyl amides with aromatic rings of varying electronic character organized into homochiral dimers in the solid state through a parallel displaced π–π interaction and two hydrogen bonds, but no such homochiral dimerization was observed for the unsubstituted case. This phenomenon supports the hypothesis that substituents stabilize π–π interactions regardless of their electronic character. To further investigate the origin of substituent effects for π–π interactions, we synthesized and crystallized a series of 4‐substituted benzoyl leucine diethyl amides. Surprisingly, only two of the 4‐substituted compounds formed homochiral dimers. A comparison among the 4‐substituted compounds that crystallized as homochiral dimers and their 3‐substituted counterparts revealed that there are differences in regard to the geometry of the aromatic rings with respect to each other, which depend on the electronic nature and location of the substituent. The crystal structures of the homochiral dimers that showed evidence of direct, local interactions between the substituents on the aromatic rings also displayed nonequivalent dihedral angles in the individual monomers. The crystallographic data suggests that such “flexing” may be the result of the individual molecules orienting themselves to maximize the local dipole interactions on the respective aromatic rings. The results presented here can potentially have broad applicability towards the development of molecular recognition systems that involve aromatic interactions.  相似文献   

18.
Owing to the steric protection by four bulky substituents in the terminal positions 1 and n, several conjugated polyenes could be reduced with K or Cs metal in 1,2-dimethoxyethane (DME) or tetrahydrofuran (THF) to fairly persistent radical anions. These compounds, denoted here as 2 , 3 ,…︁ 7 (which corresponds to the number, \2 n=2, 3, …︁7, of their formal double bonds) are 1,1,n,n-tetra(tert-butyl) derivatives of buta-1,3-diene, hexa-1,3,5-triene, octa-1,3,5,7-tetraene, deca-1,3,5,7,9-pentaene, dodeca-1,3,5,7,9,11-hexaene, and tetradeca-1,3,5,7,9,11,13-heptaene. In addition to the six polyenes 2 – 7 with all-trans-configuration, the studies comprised an isomer of 3 , the trans,cis,trans-triene, c -3 . The radical anions 2 . – 7 . and c -3 . were characterized by their hyperfine data acquired with ESR, ENDOR, and TRIPLE-resonance spectroscopy. The 1H-coupling constants comply with the spin distribution predicted for the radical anions of such `linear' π-systems by simple MO models. Ion pairs formed with K+ in DME were loose but became tighter with Cs+ in THF. Propensity to ion pairing decreased with the lengthening of the π-system on going from 2 . to 3 . – 7 .. Hyperfine data are likewise reported for the radical anions of all-trans-polyenes 8 and 9 , in which two tert-butyl substituents in one terminal position of 2 and 3 , respectively, were replaced by CN groups.  相似文献   

19.
Electrostatic self‐assembly can be used to form supramolecular vesicles in aqueous solution. Vesicles consist of cationic G8 poly(amidoamine) dendrimers and the trivalent sulfonate dye Ar27. No classical amphiphiles are present but the interplay of electrostatics, ππ interaction and geometric factors influences the structure formation. Labeled guest molecules, both small molecules and peptides, can be included inside these vesicles and vesicles imaged by fluorescence techniques. The structure was studied by dynamic and static light scattering, small‐angle neutron scattering, confocal laser scanning microscopy, and fluorescence correlation spectroscopy. The study indicates the prospect of constructing functional nanoobjects by the self‐assembly of charged molecules in aqueous solution.

  相似文献   


20.
VE-PPP, CNDO/2, and CNDO/s-CI methods have been used to investigate the electronic spectrum and structure of benzaldehyde. Electronic charge distributions and bond orders in the ground and lowest excited singlet π* ← π and π* ← n states of the molecule have been studied. The molecule has been shown to be nonplanar in the lowest π* ← n excited singlet state, in agreement with the conclusions drawn from the study of vibrational spectra. Dipole moments in both excited states have been shown to be larger than the ground-state value. Thus, the ambiguity in the experimental result for the π* ← π n excited singlet state dipole moment has been resolved. It has been shown that the n orbital is mainly localized on the CHO group. Furthermore, charge distributions, dipole moments, and molecular geometries are shown to be very different in the excited singlet π* ← π and π* ← n states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号