首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The cyclocondensation of 2,6-diformylpyridine with N,N,N,N-tetrakis(2-aminoethyl)ethane-1,2-diamine (pentene) in the presence of MnII forms the [1 + 1] pendant arm Schiff-base macrocyclic complex, [MnL3]2+. The ligand is a 15-membered pentaaza macrocycle having two 2-aminoethyl pendant arms {L3= 6,9-bis(aminoethyl)-3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),2,12,14,16-pentene}. The complex, investigated by analytical, spectroscopic and magnetic techniques, supports the formation of a highly symmetrical pentagonal bipyramid complex with the MnII ion located within a pentaaza macrocycle and two pendant amines coordinating on opposite sides of a plane defined by the macrocycle and the metal ion. The structure of the complex was also verified by ab initio HF-MO calculations using a standard 3-21G basis set.  相似文献   

2.
A new pendant armed Schiff base macrocyclic complex of [CdL]2+, was prepared via cyclocondensation of 2,6-bis(2- formylphenoxymethyl)pyridine with branched hexaamine in the presence of Cd(II) ion. The ligand was 23-membered oxaazamacrocycle having two 2-aminoethyl pendant arms [L: 3,28-dioxa-14,17-bis(aminoethyl)-11,14,17,20,34- pentaazatetracyclo[34.3.1] tetratriacontane-1(34), 4, 6, 8, 10, 20, 22, 24, 26, 30, 32-undecaene]. The complex was investigated by IR, 1H NMR, microanalysis and MALDI mass spectroscopy. The structure of the complex was verified by ab initio HF-MO calculations using a standard 3-21G* basis set. This article introduces an unusual seven-membered chelate ring and shows that by its using, the Cd-N bonds lengths within the macrocycle would be longer and also Cd(II)-pendant amine bonds lengths would be shorter.  相似文献   

3.
Syntheses of copper(II) complexes of 20-membered and 15-membered aza macrocycles 1,3,6,8,11,13,16,18-octaaza-2,7,12,17-tetrachlorocycloeicosane (OTCE, [20]-N8) and 1,3,6,8, 11,13-hexaazacyclopentadecane (HCPD, [15]-N6) involving metal template condensation between 1,2-diaminoethane, trichloromethane and dichloromethane, respectively, are reported. Formulation of [Cu4(OTCE)(H2O)8]Cl8 and [Cu3(HCPD)(H2O)6]Cl6 · 2H2O and the ligand hydrochlorides OTCE · 8HCl and HCPD · 6HCl are supported by elemental analyses, conductivity measurements, and spectral studies. For a comparative cavity size effect on the stability constant, potentiometric measurements on the copper complexes of the generated macrocycles [15]-N6 and [20]-N8 and the structurally related larger macrocycle 1,3,6,8,11,13,16,18,21,23-decaaza-2,2,7,7,12,12,17,17,22,22-decachlorocyclopentacosane (DDCP, [25]-N10, prepared recently) have been performed in aqueous solution at 25°C (μ = 0.1 M KNO3). Very high stability constants obtained for reaction Cu2+ + A ? CuA2+ (A = ligand, log K = 20.51 and 25.87, respectively, for OTCE and DDCP systems) are a reflection on the folding of the ligand to provide a small cavity suitable for fitting of the copper ion. Further, a high equilibrium constant value for CuA2+ + Cu2+ ? Cu2A4+ (OTCE system, log K = 14.59) or Cu2A4+ + Cu2+ ? Cu3A6+ (DDCP system, log K = 16.69) is due to suitable fitting of two and three copper ions in the 20-membered and 25-membered ring cavity of OTCE and DDCP, respectively.  相似文献   

4.
A series of N2S2-macrocycles with ring sizes varying between 12 and 16, as well as two 12-membered N2S2-rings with a pendant carboxylic and amino group, respectively, were synthesized. Their complexation properties towards Ag+ were studied by pH titrations and by potentiometry with a silver electrode. The observation that 1:1 ([AgLH2]3+, [AgLH]2+, [AgL]+) and 1:2 species ([AgL2H2]3+, [AgL2H]2+, [AgL2]+) were formed is interpreted by postulating that Ag+ can bind either to the S-donors only, or to both the N- and S-atoms. The most stable complex [AgL]+ in the series of the nonfunctionalized macrocycles was found for the 12-membered N2S2-ring 3 . The stability of it increased when an additional donor group was introduced into the side chain. The highest formation constant (logβ110 = 14.43(1)) was obtained with the 12-membered ring 12 carrying the ethanamine side chain. In view of a radiochemical application, all Ag+ complexes were tested in blood serum for their stability, but were not stable enough against transmetallation.  相似文献   

5.
The 14-membered tetraazamacrocyclic Ni2+ and Cu2+ complexes of 4 (1, 4, 8-trimethyl-11-[(2-methylthio)ethyl]-1, 4, 8, 11-tetraazacyclotetradecane), 5 . (1, 4-dimethyl-8, 11-bis[2-(methylthio)ethyl]-l, 4, 8, 11-tetraazacyclotetradecane), and 7 (1, 4, 8, ll-tetrakis[2-(methylthio)ethyl]-1, 4, 8, 11-tetraazacyclotetradecane), with pne, two, and four methylthio-substituted pendant chains, respectively, and the Ni2+ complex of 6 (1, 4-dimethyl-8, 11-bis (2-methoxyethyl)-1, 4, 8, 11-tetraazacyclotetradecane), with two methoxy-substituted pendant chains, were synthesized and their chemistry studied with regard to modelling F430. Solution spectra in H2O, MeCN, and DMF indicate participation of the side chain in metal coordination when the donor group is a thioether, whereas no coordination with the metal ion is observed with the ether group. Similarly the X-ray structures of the thioether-containing compounds [Ni( 5 )](ClO4)2, [Cu( 5 )](ClO4)2, and [Cu( 7 )](ClO4)2 show a coordination number of 5, whereas that of [Ni( 6 )](ClO4)2 with ether pendant chains, shows a coordination number of 4. Cyclic voltammetry of these complexes in MeCN reveals that Ni2+ is reversibly reduced to Ni+ between ?0.64 and ?0.77 V vs. SCE, the potential being influenced by the nature and number of the pendant chains. At more negative potentials, the thioether is cleaved, whereby a thiol is formed; the thiol is then oxidized at ca. + 0.8 V vs. SCE, when a glassy carbon electrode is used, or at ca. 0 V vs. SCE at a dropping Hg electrode. No cleavage of the ether bond in [Ni( 6 )](ClO4)2 is observed under similar conditions.  相似文献   

6.
Two new asymmetric tripodal tetraamine ligands, 2-((bis(2-aminoethyl)amino)methyl)benzenamine (L2) and 2-(((2-aminoethyl)(3-aminopropyl)amino)methyl)benzenamine (L3) were synthesized and characterized. [1+1] Macrocyclic Schiff-base complexes containing 1,2-diphenoxyethane head units and a 2-aminobenzyl pendant arm, were synthesized as [MnL4(MeOH)](ClO4)2 (1), [MnL5(MeOH)](ClO4)2 (2), [CdL4(H2O)](NO3)2 (3) and [CdL5(H2O)](NO3)2 (4) from the metal ion templated cyclocondensation reactions of 2-[2-(2-formylphenoxy)ethoxy]benzaldehyde with the (L2) or (L3) tripodal tetraamine ligands. The crystal structure determination of (1) and (4) showed that the complex cations that had formed consisted of pentagonal bipyramidally coordinated Mn(II) and Cd(II) ions, centrally located in a N3O2 macrocycle, with one 2-aminobenzyl pendant arm. Supporting ab initio HF-MO calculations have been undertaken using the standard 3-21G and 6-31G basis sets.  相似文献   

7.
The new bis-macrocycle 1, 1′-[(1H-pyrazol-3], 5-diyl)bis(methylene)bis[1, 4, 7-triazacyclononane] ( 1 ) was synthesized and its complexation with Cu2+ studied. Potentiometric and spectrophotometric titrations indicate that, in addition to the mononuclear species [Cu(LH2)]4+, [Cu(LH)]3+, [CuL]2+, and [Cu(LH?1)]+, binuclear complexes such as [Cu2L]4+, [Cu2(LH?1)]3+, and [Cu2(LH-2)]2+ are also formed in solution. The stability constants and spectral properties of these are reported. The binuclear species [Cu2(LH?1)]3+ specifically reacts with an azide ion to give a ternary complex [Cu2(LH?1)(N3)]2+, the stability and structure of which were determined spectrophotometrically and by X-ray diffraction, respectively. The two Cu2+ ions are in a square-pyramidal coordination geometry. The axial ligand is one of the N-atoms of the 1, 4, 7-triazacyclononane ring, whereas at the base of the square pyramid, one finds the other two N-atoms of the macrocycle, one N-atom of the pyrazolide and one of the azide, both of which are bridging the two metal centres. In [Cu2(LH?1)(N3)]2+, a strong antiferromagnetic coupling is present, thus resulting in a species with a low magnetic moment of 1.36 B.M. at room temperature.  相似文献   

8.
Solution studies of the Cu2+ complex with 11-(3-aminopropyl)-1,4,7,11-tetraazacyclotetradecane(L) indicate that, depending on the pH and on the age of the solution, different species are present. Dissolving the solid [CuL](ClO4)2 in slightly acidic solution gives the protonated complex AH , characterized by an absorption maximum at 574 nm, by a relatively fast proton-induced dissociation kinetics and by the typical colour change in basic solution to give the deprolonated form A with coordinated side chain. AH slowly interconverts in acidic solution to a new species BH , which has an absorption maximum at 547 nm, and which is kineticaily more stable against acid dissociation and shows no coordination of the amino group of the side chain. In alkaline solution, however, the deprotonated form B deliver A in a base induced reaction. The X-ray diffraction studies of A and BH allow to determine the geometry of the metal ion and the configuration of the macrocycle. In A , the Cu2+ is pentacoordinated by the five N-atoms of the ligand and the macrocycle is in the RRSR configuration, whereas in BH the Cu2+ is octahedrally coordinated by the four N-atoms of the macrocycle and two axial perchlorate O-atoms with the macrocycle in the RRRS configuration. The amino group of the side chain is protonated and not coordinated. Thus, the on/off equilibrium of the side chain not only changes the geometry of the metal ion, as is generally found, but also alters the macrocyclic moiety.  相似文献   

9.
New [ML(H2O)2] complexes (M = Co2+, Ni2+, or Cu2+; H2L = diphenylthiocarbazide) were synthesized and studied using IR and diffuse reflection electronic spectroscopy, magnetic chemistry, conductometry, and DTA. The metals were shown to coordinate L2–through nitrogen and sulfur atoms. The complex [CuL(H2O)2] is a dimer.  相似文献   

10.
The two macrocycles 1-(2-aminoethyl)- and 1-[2-(dimethylamino)ethyl]-4, 8, 11-trimethyl-1, 4, 8, 11-tetraazacyclotetradecane, 1 and 2 , respectively, and their metal complexes with Co2+, Ni2+ and Cu2+ were prepared. The different spectral properties of the complexes with these two ligands can be rationalized by assuming that, in the case of 1 , the amino group of the pendant arm is axially coordinated to the metal ion giving a pentacoordinate structure, whereas the dimethylamino group of 2 cannot bind because of sterical hindrance. This is also corroborated by the observation that the complexes of 2 react with unidentate ligands such as N and SCN? to give ternary species MLX+, whereas those of 1 do not. This indicates that the complexes of 1 have no free coordination site, their coordination sphere being completely saturated by the five N-atoms of the macrocycle, whereas the complexes of 2 having a vacant site still can add an unidentate ligand.  相似文献   

11.
A series of tetra-N-alkylated 1,4,8,11-tetraazacyclotetradecanes have been synthesized and their complexation potential towards Ni2+ and Cu2+ studied. In the case of sterically demanding alkyl substituents, such as i-Pr, PhCH2, or 2-MeC6H4CH2, no metal complexes are formed, whereas for substituents such as Me, Et, and Pr, the metal ion is incorporated into the macrocycle. The spectroscopic properties of the Ni2+ and Cu2+ complexes in aqueous solution indicate that, depending on the sterical hindrance of the N-substituents, the complexes are either square planar or pentacoordinated. All these Ni2+ and Cu2+ complexes react with N to give ternary species, the stability of which have been determined by spectrophotometric titrations. The tendency to bind N decreases with increasing steric hindrance of the alkyl substituents. The X-ray studies of the Ni2+ complex with the macrocycle 11 , substituted by two Me and two Pr groups, and that of the Cu2+ complex with the tetraethyl derivative 8 show that in the solid state, the metal ions exhibit square planar coordination with a small distortion towards tetrahedral geometry.  相似文献   

12.
A heptadentate ligand, tris[(L)-alanyl-2-carboxamidoethyl]amine (H3trenala), has been synthesized as its tetrahydrochloride salt; its protonation constants and the stability constants of the copper(II) and nickel(II) chelates have been determined by potentiometry. Mononuclear species with protonated, neutral, or deprotonated forms of the ligand, [Cu(H5trenala)]4+, [M(H4trenala)]3+, [M(H3trenala)]2+, [M(H2trenala)]+, and [M(Htrenala)] (M?=?Cu2+ and Ni2+) have been detected in all cases, while only Cu2+ gives dinuclear [Cu2(H2trenala)]2+, [Cu2(Htrenala)]2+, [Cu2(trenala)]+, and [Cu2(trenala)(OH)] species. Two dinuclear copper(II) complexes have been prepared and characterized by spectroscopic techniques (IR, UV-Vis, mass electro-spray) and thermogravimetric analysis.  相似文献   

13.
Summary New complexes of general formulae [Ni(HL)2], [ML]·H2O and [Cu(HL)X] (H2L = pyrrole-2-aldehyde Schiff bases ofS-methyl- andS-benzyldithiocarbazates; X = Cl or Br; M = NiII, CuII, ZnII or CdII) were prepared and characterized by a variety of physicochemical techniques. The Schiff bases coordinate as NS bidentate chelating agents in [Ni(HL)2] and [Cu(HL)X], and as tridentate NNS chelates in [ML] (M = NiII, CuII, ZnII or CdII). Both the [Ni(HL)2] and [NiL] complexes are diamagnetic and square-planar. Based on magnetic and spectroscopic evidence, thiolate sulphur-bridged dimeric square-planar structures are assigned to the [Cu(HL)X] and [ML] (M = NiII or CuII) complexes. The complexes ML (M = ZnII or CdII) are polymeric and octahedral.  相似文献   

14.
A new series of macrocyclic diamides with carboxyl, pyridyl and picolinate pendant arms have been synthesized and the stability constants of their complexes with Ni2+, Cu2+, Zn2+, Cd2+, Pb2+ in water were determined. Complexes with a stoichiometry of 1 : 1 (M: L) were found for all ligands with the exception of 15-membered crown ethers with one pendant carboxyl or pyridine group. The ligand containing two picolinate backbone groups exhibits the highest values of the stability constants for all studied cations (logβML?=?12.5–15.7). X-ray study of free ligands showed that the introduction of benzene and amide fragments into the macrocyclic moiety provides a flatten open structure of the ligand. The crystallographic analysis of Cu2+ and Zn2+ complexes revealed the external coordination of the metal atom by amine N atoms of the macrocycle and heteroatoms of the pendant groups.  相似文献   

15.
The protonation constants of the anion of the cephalosporin antibiotic ceftazidime Ctzd and formation constants of its complexes with Ni2+ and Cu2+ have been determined by pH metric titration at 25°С and ionic strength 0.1 (KNO3): logβ(HCtzd) = 4.82 ± 0.04, logβ(H2Ctzd+) = 7.62 ± 0.06, logβ(H3Ctzd2+) = 9.23 ± 0.09, logβ(NiCtzd+) = 4.04 ± 0.03, logβ(Ni(Ctzd)2) = 6.41 ± 0.06, and logβ(CuCtzd+) = 5.03 ± 0.06. The potentiometric method has failed to reveal the complexation of Ctzd with Co2+, Zn2+, and Cd2+. The composition of the [Ni(Ctzd)2] and [CuCtzd]+ complexes has been confirmed by spectrophotometry. The computer models of the [NiCtzd]+ and [CuCtzd]+ complexes have been calculated by the DFT method with the use of the B3LYP hybrid functional and the LACV3P**++ basis set.  相似文献   

16.
A new (E, E)-dioxime cobalt(III) complex [Co(HL)2pyCl]containing four 23-membered macrocyclic ionophores has beenprepared. The cobalt(III) complex [Co(LBF2)2pyCl]bridged with BF2 + was prepared using the precursorcobalt(III) complex and boron trifluoride ethyl ethercomplex. The solvent extraction of heavy metal cationssuch as Ni2+, Cu2+, Zn2+, Hg2+ and Pb2+ by the BF2 +-capped cobalt(III) complex has been investigated. The structure of the complexes is proposedaccording to elemental analyses, 1H and 13C-NMR, IRand mass spectral data.  相似文献   

17.
The reaction of copper(II) perchlorate with the hydrochloride salt of 3,6,9,15-tetra-azabicyclo[9.3.1]penta-deca-1,11,13-triene (L1) in acetonitrile forms two macrocyclic complexes that can be characterized: [L1CuIICl][ClO4] (1) and [L1CuIICl]2[CuCl4] (2). The structural, electronic, and redox properties of these complexes were studied using spectroscopy (EPR and UV–visible) and electrochemistry. In addition, the solid-state structure of 1 was obtained using X-ray diffraction. The copper(II) is five-coordinate ligated by four N-atoms of the macrocycle and a chloride atom. EPR studies of 1 both in DMF and aqueous solution indicate the presence of a single copper(II) species. In contrast, EPR studies of 2 performed in frozen DMF and in the solid-state reveal the presence of two spectroscopically distinct copper(II) complexes assigned as [L1CuIICl]+ and [CuIICl4]2?. Lastly, electrochemical studies demonstrate that both [L1CuIICl]+ and [CuIICl4]2? are redox active. Specifically, the [L1CuIICl]+ undergoes a quasi-reversible Cu(II)/(I) redox reaction in the absence of excess chloride. In the presence of chloride, however, the chemical irreversibility of this couple becomes evident at concentrations of chloride that exceed 50 mM. As a result, the presence of chloride from the chemical equilibrium of this latter species impedes the reversibility of the reduction of [L1CuIICl]+ to [L1CuICl]0.  相似文献   

18.
Three new pendant arm Schiff-base macrocyclic complexes, [CdLn]2+ (n = 5, 6, 7), have been prepared via cyclocondensation of 2,6-diacetylpyridine with three different branched hexaamines in the presence of Cd(II). The ligands are 15-, 16- and 17-membered pentaaza macrocycles having two 2-aminoethyl pendant arms [L5 = 2,13-dimethyl-6,9-bis(aminoethyl)-3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),2,12,14,16-pentaene, L6 = 2,14-dimethyl-6,10-bis(aminoethyl)-3,6,10,13,19-pentaazabicyclo[13.3.1]nonadeca-1(19),2,13,15,17-pentaene and L7 = 2,15-dimethyl-6,11-bis(aminoethyl)-3,6,11,14,20-pentaazabicyclo[14.3.1]eicosa-1(20),2,14,16,18-pentaene]. All complexes were investigated by IR, 1H and 13C NMR, COSY(H,H) and HETCOR(H,C) spectroscopy and X-ray diffraction. In the solid state structure of each complex the Cd(II) ion is situated centrally within an approximately planar pentaaza macrocyclic ring, binding to the five nitrogen atoms, and also to the two pendant amines which are located on opposite sides of the macrocyclic plane. ab initio HF-MO calculations using a standard 3-21G* basis set have been used to verify that these similar basic structures correspond to energy minima in the gas phase.  相似文献   

19.
Twelve-, fifteen-, and eighteen-membered diaza-crown-N, N-′dialkanoic acids LH2 and their inner salt copper(II) complexes CuL and dicopper complex [CuL(3). CuCl2. CH3OHn were obtained. The complexes of 15- and 18-membered ligands contain Cu2+ ion inside the ring.  相似文献   

20.
The dissociation of [CuII(L)His]•2+ complexes [L=diethylenetriamine (dien) or 1,4,7-triazacyclononane (9-aneN3)] bears a strong resemblance to the previously reported behavior of [CuII(L)GGH]•2+ complexes. We have used low-energy collision-induced dissociation experiments and density functional theory (DFT) calculations at the B3LYP/6-31+G(d) level to study the macrocyclic effect of the auxiliary ligands on the formation of His•+ from prototypical [CuII(L)His]•2+ systems. DFT revealed that the relative energy barriers of the same electron-transfer (ET) dissociation pathways of [CuII(9-aneN3)His]•2+ and [CuII(dien)His]•2+ are very similar, with the ET reactions of [CuII(9-aneN3)His]•2+ leading to the generation of two distinct His•+ species; in contrast, the proton transfer (PT) dissociation pathways of [CuII(9-aneN3)His]•2+ and [CuII(dien)His]•2+ differ considerably. The PT reactions of [CuII(9-aneN3)His]•2+ are associated with substantially higher barriers (>13 kcal/mol) than those of [CuII(dien)His]•2+. Thus, the sterically encumbered auxiliary 9-aneN3 ligand facilitates ET reactions while moderating PT reactions, allowing the formation of hitherto nonobservable histidine radical cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号