首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The synthesis and crystal structures of 3,5-dinitro-1H-pyrazolyl-4-carboxylic acid (H2dnpzc) and its four complexes with Ca2+, Ba2+, Na+ and K+ are reported in this paper. Ca(dnpzc) · 5H2O exhibits a 1D polymeric structure, whereas Ba(dnpzc) · 4H2O possesses a 2D structure. The structure of Na2(dnpzc) · 4H2O consists of 2D layers of [Na(dnpzc)]n and 1D chains of [Na(H2O)3]+n. K2(dnpzc) · H2O has a true 3D structure. It was observed that the doubly deprotonated ligand (dnpzc2–) can act as a versatile bridge to form polymeric structures by varying combinations of its 8 potential donor atoms (two carboxy O atoms, two pyrazolyl N atoms and four nitro O atoms). Particularly in the structure of K2(dnpzc) · H2O, all the 8 donor atoms of dnpzc2– take part in the coordination and as many as 10 potassium atoms are connected by one ligand.  相似文献   

2.
Ab initio molecular orbital calculations with split-valence plus polarization basis sets and incorporating valence-electron correlation have been performed to determine the equilibrium structure of ethyloxonium ([CH3CH2OH2]+) and examine its modes of unimolecular dissociation. An asymmetric structure (1) is predicted to be the most stable form of ethyloxonium, but a second conformational isomer of Cs symmetry lies only 1.4 kJ mol?1 higher in energy than 1. Four unimolecular decomposition pathways for 1 have been examined involving loss of H2, CH4, H2O or C2H4. The most stable fragmentation products, lying 65 kJ mol?1 above 1, are associated with the H2 elimination reaction. However, large barriers of 257 and 223 kJ mol?1 have to be surmounted for H2 and CH4 loss, respectively. On the other hand, elimination of either C2H4 or H2O from ethyloxonium can proceed without a barrier to the reverse associations and, with total endothermicities of 130 and 160 kJ mol?1, respectively, these reactions are expected to dominate at lower energies. A second important equilibrium structure on the surface is a hydrogen-bridged complex, lying 53 kJ mol?1 above 1. This complex is involved in the C2H4 elimination reaction, acts as an intermediate in the proton-transfer reaction connecting [C2H5]+ +H2O and C2H4 + [H3O]+ and plays an important role in the isotopic scrambling that has been observed experimentally in the elimination of either H2O or C2H4 from ethyloxonium. The proton affinity of ethanol was calculated as 799 kJ mol?1, in close agreement with the experimental value of 794 kJ mol?1.  相似文献   

3.

The title compound was prepared by a template synthesis from 2,6-diacetylpyridine, dioxamohydrazide and Fe(ClO4)3·6H2O(mol ratio 1:2:1) in MeOH/H2O(3:1) solution and its structure determined by single-crystal X-ray diffraction; triclinic, space group P1, a = 7.5186(7), b = 10.9730(9), c = 14.6110(10) Å, α = 95.866(1), β = 100.252(1), γ = 92.895(1), z = 2. The polydentate ligand is coordinated as a dianionic pentadentate while water molecules occupy apical positions in the structure. This is the first example of a monomeric, pentagonal bipyramidal structure of an Fe(III) complex with a dianionic bis(acylhydrazone) derivative of 2,6-diacetylpyridine.  相似文献   

4.
The imidazole‐based dicarboxylate ligand 2‐(4‐(pyridin‐4‐yl)phenyl)‐1H‐imidazole‐4,5‐dicarboxylic acid (H3PyPhIDC), was synthesized and its coordination chemistry was studied. Solvothermal reactions of CaII, MnII, CoII, and NiII ions with H3PyPhIDC produced four coordination polymers, [Ca(μ3‐HPyPhIDC)(H2O)2]n ( 1 ), {[M32‐H2PyPhIDC)23‐HPyPhIDC)26(H2O)2] · 6H2O}n [M = Mn ( 2 ), Co ( 3 )], and {[Ni(μ3‐HPyPhIDC)(H2O)] · H2O}n ( 4 ). Compounds 1 – 4 were analyzed by IR spectroscopy, elemental analyses, and single‐crystal and powder X‐ray diffraction. Compound 1 displays a one‐dimensional (1D) infinite chain. Compounds 2 and 3 are of similar structure, showing 2D network structures with a (4,4) topology based on trinuclear clusters. Compound 4 has another type of 2D network structure with a 3‐connected (4.82) topology. The results revealed that the structural diversity is attributed to the coordination numbers and geometries of metal ions as well as the coordination modes and conformations of H3PyPhIDC. Moreover, the thermogravimetric analyses of all the compounds as well as luminescence properties of the H3PyPhIDC ligand and compound 1 were also studied.  相似文献   

5.
Three complexes, Na4[DyIII(dtpa)(H2O)]2?·?16H2O, Na[DyIII(edta)(H2O)3]?·?3.25H2O and Na3[DyIII (nta)2(H2O)]?·?5.5H2O, have been synthesized in aqueous solution and characterized by FT–IR, elemental analyses, TG–DTA and single-crystal X-ray diffraction. Na4[DyIII(dtpa)(H2O)]2?·?16H2O crystallizes in the monoclinic system with P21/n space group, a?=?18.158(10)?Å, b?=?14.968(9)?Å, c?=?20.769(12)?Å, β?=?108.552(9)°, V?=?5351(5)?Å3, Z?=?4, M?=?1517.87?g?mol?1, D c?=?1.879?g?cm?3, μ?=?2.914?mm?1, F(000)?=?3032, and its structure is refined to R 1(F)?=?0.0500 for 9384 observed reflections [I?>?2σ(I)]. Na[DyIII(edta)(H2O)3]?·?3.25H2O crystallizes in the orthorhombic system with Fdd2 space group, a?=?19.338(7)?Å, b?=?35.378(13)?Å, c?=?12.137(5)?Å, β?=?90°, V?=?8303(5)?Å3, Z?=?16, M?=?586.31?g?mol?1, D c?=?1.876?g?cm?3, μ?=?3.690?mm?1, F(000)?=?4632, and its structure is refined to R 1(F)?=?0.0307 for 4027 observed reflections [I?>?2σ(I)]. Na3[DyIII(nta)2(H2O)]?·?5.5H2O crystallizes in the orthorhombic system with Pccn space group, a?=?15.964(12)?Å, b?=?19.665(15)?Å, c?=?14.552(11)?Å, β?=?90°, V?=?4568(6)?Å3, Z?=?8, M?=?724.81?g?mol?1, D c?=?2.102?g?cm?3, μ?=?3.422?mm?1, F(000)?=?2848, and its structure is refined to R 1(F)?=?0.0449 for 4033 observed reflections [I?>?2?σ(I)]. The coordination polyhedra are tricapped trigonal prism for Na4[DyIII(dtpa)(H2O)]2?·?16H2O and Na3[DyIII(nta)2(H2O)]?·?5.5H2O, but monocapped square antiprism for Na[DyIII(edta)(H2O)3]?·?3.25H2O. The crystal structures of these three complexes are completely different from one another. The three-dimensional geometries of three polymers are 3-D layer-shaped structure for Na4[DyIII(dtpa)(H2O)]2?·?16H2O, 1-D zigzag type structure for Na[DyIII(edta)(H2O)3]?·?3.25H2O and a 2-D parallelogram for Na3[DyIII(nta)2(H2O)]?·?5.5H2O. According to thermal analyses, the collapsing temperatures are 356°C for Na4[DyIII(dtpa)(H2O)]2?·?16H2O, 371°C for Na[DyIII(edta)(H2O)3]?·?3.25H2O and 387°C for Na3[DyIII(nta)2(H2O)]?·?5.5H2O, which indicates that their crystal structures are very stable.  相似文献   

6.
Reported here is the crystal structure of a heterocycle that implements a donor–donor–acceptor hydrogen‐bonding pattern, as found in the Z component [6‐amino‐5‐nitropyridin‐2(1H)‐one] of an artificially expanded genetic information system (AEGIS). AEGIS is a new form of DNA from synthetic biology that has six replicable nucleotides, rather than the four found in natural DNA. Remarkably, Z crystallizes from water as a 1:1 complex of its neutral and deprotonated forms, and forms a `skinny' pyrimidine–pyrimidine pair in this structure. The pair resembles the known intercalated cytosine pair. The formation of the same pair in two different salts, namely poly[[aqua(μ6‐2‐amino‐6‐oxo‐3‐nitro‐1,6‐dihydropyridin‐1‐ido)sodium]–6‐amino‐5‐nitropyridin‐2(1H)‐one–water (1/1/1)], denoted Z‐Sod, {[Na(C5H4N3O3)(H2O)]·C5H5N3O3·H2O}n, and ammonium 2‐amino‐6‐oxo‐3‐nitro‐1,6‐dihydropyridin‐1‐ide–6‐amino‐5‐nitropyridin‐2(1H)‐one–water (1/1/1), denoted Z‐Am, NH4+·C5H4N3O3·C5H5N3O3·H2O, under two different crystallization conditions suggests that the pair is especially stable. Implications of this structure for the use of this heterocycle in artificial DNA are discussed.  相似文献   

7.
The ligand N-(2-propionic acid)-salicyloyl hydrazone(H3L, 1) and its new transition metal(II) complexes [NiHL(bipy)H2O] (2), [CdHL(bipy)(H2O)2]2·2H2O (3) and [NiHL(phen)H2O]·H2O (4) (HL is a dianion, bipy?=?2,2′-bipyridine and phen?=?1,10-phenanthroline) were synthesized and characterized on the basis of elemental analyses, IR, 1H NMR, molar conductivity and thermal analysis. Single crystal X-ray diffraction showed that 1 is in keto form and connected by hydrogen bonds to form a two-dimensional supermolecular compound. Complexes 2 and 4 have the same structure with distorted meridional octahedral geometry with 1 as a tridentate ligand with keto-form coordination by azomethine, carboxyl O and acyl O. In 3, ligand 1 bridges two Cd(II) atoms by μ 2-O of carboxyl. H-bonding is an important weak interaction for constructing supermolecular frameworks. There are π–π interactions between bipy or phen rings in 3 or 4, respectively.  相似文献   

8.
Abstract

During the course of NMR structural investigations of the title compound (N-phenyl uronamide) we noticed the presence of a strong H2O activity-dependent NOE between the small amount of H2O associated with the carbohydrate's hydroxyl protons in solutions of DMSO-d6 . The -OH/H2O off-diagonal t1 slices displayed a NOESY τm-dependence similar to molecules (τc = 0.1–5 ns) experiencing slow exchange (1–10 s?1). From T1 data at two fields a τc for the title compound was calculated to be ca. 0.54 ns at 313 K. The -OH/H2O exchange rate constant, K, increased from 0.32 to 11.14 s?1 as the molar ratio of [H2O]:[N-phenyl uronamide] increased from ca. 4.5 to 5.2. The latter finding indicated that the -OH/H2O proton exchange process, which is strongly affected by the translational diffusion of H2O, diminished as [H2O] approached that which was inherently a complex in the crystalline structure (e.g., C18H20O5N2·4H2O) and was, presumably, tightly hydrogen-bound to the -OH/NH funtional groups. To test this, the title compound was recrystallized from ethanol/2, 2-dimethoxypropane whereupon the bound H2O was eliminated; the lack of H2O induced a significant upfield shift in the resonance frequencies of all the exchangable (-OH Δδ=86.33Hz; -NH Δδ=67.84Hz) functional groups relative to the methine protons (CH Δδ=0.25Hz).  相似文献   

9.
Imidazole‐4,5‐dicarboxylic acid (H3IDC) and its derivatives are widely used in the preparation of new coordination polymers owing to their versatile bridging coordination modes and potential hydrogen‐bonding donors and acceptors. A new one‐dimensional coordination polymer, namely catena‐poly[[diaquacadmium(II)]‐μ3‐2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylato)], [Cd(C16H6N4O8)0.5(H2O)2]n or [Cd(H2Phbidc)1/2(H2O)2]n, has been synthesized by the reaction of Cd(OAc)2·2H2O (OAc is acetate) with 2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, one type of Cd ion (Cd1) is six‐coordinated by two N atoms and two O atoms from one H2Phbidc4− ligand and by two O atoms from two water molecules, forming a significantly distorted octahedral CdN2O4 coordination geometry. In contrast, the other type of Cd ion (Cd2) is six‐coordinated by two N atoms and two O atoms from two symmetry‐related H2Phbidc4− ligands and by two O atoms from two symmetry‐related water molecules, leading to a more regular octahedral coordination geometry. The Cd1 and Cd2 ions are linked by H2Phbidc4− ligands into a one‐dimensional chain which runs parallel to the b axis. In the crystal, the one‐dimensional chains are connected through hydrogen bonds, generating a two‐dimensional layered structure parallel to the ab plane. Adjacent layers are further linked by hydrogen bonds, forming a three‐dimensional structure in the solid state.  相似文献   

10.
The tris­(1H‐benzimidazol‐2‐yl­meth­yl)­amine (ntb) mol­ecule crystallizes in different solvent systems, resulting in two kinds of adduct, namely the monohydrate, C24H21N7·H2O or ntb·H2O, (I), and the acetonitrile–methanol–water (1/0.5/1.5) solvate, C24H21N7·C2H3N·0.5CH4O·1.5H2O or ntb·1.5H2O·0.5MeOH·MeCN, (II). In both cases, ntb adopts a tripodal mode to form hydrogen bonds with a solvent water mol­ecule via two N—H⋯O and one O—H⋯N hydrogen bond. In (I), the ntb·H2O adduct is further assembled into a two‐dimensional network by N—H⋯N and O—H⋯N hydrogen bonds, while in (II), a double‐stranded one‐dimensional chain structure is assembled via N—H⋯O and O—H⋯O hydrogen bonds, with the acetonitrile mol­ecules located inside the cavities of the chain structure.  相似文献   

11.
The first X-ray crystal structures of coordination compounds of OP[NC4H8O]3 phosphoric triamide (L) are investigated in Cl2(CH3)2Sn(trans-L)2 (1) and [Mn(H2O)4(trans-L)2]Cl2·2H2O (2) as models of molecular and salt complexes for Hirshfeld surface (HS)-based analysis. The crystal packing of 1 includes weak interactions, while in the salt complex 2, a 2-D aggregate, along the (001) plane, is mediated by normal O–H?Cl and O–H?O hydrogen bonds. In the Hirshfeld study, the crystal cohesions of 1 and 2 are recognized via H?H, O?H/H?O, and Cl?H/H?Cl contacts. Among these interactions, hydrogen bonds O–H?Cl occur in the salt structure of 2, as well as some weaker hydrogen interactions as C–H?O (1 and 2), C–H?Cl (1), and O–H?O (2). The full fingerprint plots have nearly symmetric shapes for two independent molecules of 1, while an asymmetric shape appears for the cationic component of 2. To extract more detailed information on close intermolecular contacts, the molecular surface of the previously reported structure L was also mapped. The structure 2 is the first monomeric octahedral Mn(II)–phosphoric triamide complex reported so far. Furthermore, the HS analysis of 2 is the first such study on a cation–anion complex structure including phosphoric triamide ligand.  相似文献   

12.

Three new binuclear w -oxalato copper(II) complexes of composition [(Cu(N,N' -dieten) H2O)2ox](ClO4)2 ·H2O (1) (N,N'-dieten = N,N'-diethylethylenediamine, H2ox = oxalic acid), [(Cu(trimeen)H2O)2ox](ClO4)2·2H2O (2) (trimeen = N,N,N'-trimethylethylenediamine) and [(Cu(trimeen)H2O)2ox](NO3)2 ·2H2O (3) have been isolated from the reactions of Cu(ClO4)2 ·6H2O (or Cu(NO3)2 ·3H2O), the appropriate amine and Na2ox in water and have been characterized by IR and electronic spectroscopy and magnetic measurements. The crystal structure of [(Cu(N,N' -dieten)H2O)2 ox](ClO4)2.H2O (1) has been determined by single-crystal X-ray analysis. The structure of ( 1 ) consists of binuclear cations [(N,N'-dieten)H2O)Cu(ox)Cu(N,N'-dieten)H2O)]2+, perchlorate anions and water molecules of crystallization. The copper atom is coordinated by two oxygen atoms of the oxalato ligand, two nitrogen atoms belonging to N,N'-dieten and one oxygen atom of water in a distorted square-pyramidal arrangement. The temperature dependence of magnetic susceptibilities (78-293 K) was measured for 1-3 . Magnetochemical measurements show that copper(II) ions in these compounds are antiferromagnetically coupled with J = -172 cm-1, -172 cm-1 and -168 cm-1 (H = -2JS 1 S 2, S 1= S 2 = 1/2) for 1, 2 and 3, respectively.  相似文献   

13.
The monoclinic crystal structure of Na2SO3(H2O)7 is characterized by an alternating stacking of (100) cationic sodium–water layers and anionic sulfite layers along [100]. The cationic layers are made up from two types of [Na(H2O)6] octahedra that form linear 1[Na(H2O)4/2(H2O)2/1] chains linked by dimeric [Na(H2O)2/2(H2O)4/1]2 units on both sides of the chains. The isolated trigonal–pyramidal sulfite anions are connected to the cationic layers through an intricate network of O—H…O hydrogen bonds, together with a remarkable O—H…S hydrogen bond, with an O…S donor–acceptor distance of 3.2582 (6) Å, which is about 0.05 Å shorter than the average for O—H…S hydrogen bonds in thiosalt hydrates and organic sulfur compounds of the type Y—S—Z (Y/Z = C, N, O or S). Structural relationships between monoclinic Na2SO3(H2O)7 and orthorhombic Na2CO3(H2O)7 are discussed in detail.  相似文献   

14.
通过水热或溶剂热合成的方法制备了5个一维配合物{[Zn(btbb)_(0.5)(m-phda)]·0.5H_2O}_n(1),{[Cd_2(btbb)(adtda)_2(H_2O)]·H_2O}_n(2),[Mn_2(btbb)(tbi)_2]_n(3),{[Cd(btbb)_(0.5)(3-Nitro-o-bdc)(H_2O)]·H_2O}_n(4)和[Cd_2(btbb)(tbi)_2]_n(5)(btbb=1,4-双(2-(4-噻唑基)苯并咪唑-1-基甲基)苯,m-H_2phda=间苯二甲酸,H_2adtda=1,3-金刚烷二羧酸,H_2tbi=5-叔丁基间苯二甲酸,3-Nitro-o-H_2bdc=3-硝基-1,2-苯二甲酸)。配合物1是一个包含22元环的一维链。配合物2是一个包含8元环的一维链,并且氮配体在这个一维链中仅仅起到装饰作用。配合物3是一个一维双链结构。配合物4是一个包含14元环的一维链。配合物5是一个阶梯状的一维双链结构。  相似文献   

15.
The aim of this work was to determine the structure of stable heteroassociates (HAs) with the stoichiometric ratios 1:2, 2:1, and 4:1 of molecules formed in the HF-(C2H5)2O binary liquid system. The stretching frequencies of HF molecules found for each HA using a special procedure for processing IR spectra were compared with the calculated frequencies V HF of the stable molecular complexes (HF)m ((C2H5)2O)n (m = 1, 2, 4, 8; n = 1, 2) with different topologies by the density functional method (B3LYP/6-31++G(d,p)). As a result, it was shown that the most stable (among H-bonded complexes with the same stoichiometric ratio of molecules) HAs HF((C2H5)2O)2, (HF)4 ((C2H5)2O)2, and (HF)8-((C2H5)2O)2 formed in HF solutions in diethyl ether. All of them had a cyclic structure and a common peculiarity of structure: only one lone electron pair of the oxygen atom of the (C2H5)2O molecules is involved in hydrogen bonding.  相似文献   

16.
A two‐dimensional (2D) layered MgII coordination polymer (CP) with a high tolerance for H2O was designed, synthesised, and crystallographically characterised. The synthesis was achieved by the introduction of a flexible 2D layered structure composed of MgII ions and isonicotinate N‐oxide ligands. Owing to its high H2O tolerance, the obtained 2D layered structure has the flexibility to repeatedly adsorb a large amount of H2O associated with interlayer expansion and enable the removal of H2O from a H2O/2‐propanol mixed vapour. These results indicate that the CP could be an excellent dehydrating agent.  相似文献   

17.
The crystal structure of the title complex {[Co(TCB)2/2-(IMI)2(H2O)2][Co(IMI)4(H2O)2] } (H2O)4 (where TCB = 1,2,4,5-benzenetetracarboxylic anion; IMI = imidazole) has been determined by X-ray diffraction method. Crystal data for {[Co(TCB)2/2(IMI)2(H2O)2][Co(IMI)4(H2O)2]}-(H2O)4: triclinic, space group P 1, a = 1.0647(2) nm, b = 1.1165(1)nm,c = 1.00361(1)nm,α = 91.56(1)°,β = 111.34(1)°, γ = 115.642(10)°, V = 0.9772(3) nm5, Z = 1. The polymer cobalt (II) complex has a novel three-dimension network structure. Co(1) atom and Co(2) atom both are coordinated in an octahedral arrangement and located in the center of the coordination anion and the center of the coordination cation, respectively. Moreover four carboxyl groups of TCB are divided into two types, two para-carboxyl groups bridge Co(1) atom in monodentate fashion and other two para-carboxyl groups are in free.  相似文献   

18.
Calcium carbonate (CaCO3) is an inorganic compound which is widely used in industry, chemistry, construction, ocean acidification, and biomineralization due to its rich constituent on earth and excellent performance, in which calcium carbonate hydrates are important systems. In Zou et al's work (Science, 2019, 363, 396-400), they found a novel calcium carbonate hemihydrate phase, but the structural stability, optical, and mechanical properties have not been studied. In this work, the stability, electronic, optical, and mechanical properties of novel calcium carbonate hydrates were investigated by using the first-principles calculations using density functional theory. CaCO3·xH2O (x = 1/2, 1 and 6) are determined dynamically stable phases by phonon spectrum, but the Gibbs energy of reaction of CaCO3·1/2H2O is higher than other calcium carbonate hydrates. That is why CaCO3·1/2H2O is hard to synthesize in the experiments. In addition, the optical and mechanical properties of CaCO3·xH2O (x = 1/2, 1 and 6) are expounded in detail. It shows that the CaCO3·1/2H2O has the largest bulk modulus, shear modulus, and Young's modulus with the values 60.51 GPa, 36.56 GPa, and 91.28 GPa. This work will provide guidance for experiments and its applications, such as biomineralization, geology, and industrial processes.  相似文献   

19.
The pale‐rose compound [(μ‐C6H8O4)4/2Co(μ‐H2O)2Co(H2O)4] · 4 H2O was prepared from adipic acid and CoCO3 in aqueous solution. The crystal structure (monoclinic, P21/n (no. 14), a = 8.061(1), b = 15.160(2), c = 9.708(2) Å, β = 90.939(7)°, Z = 2, R = 0.0405, wR2 = 0.0971) consists of adipate bridged supramolecular [(μ‐C6H8O4)4/2Co(μ‐H2O)2Co(H2O)4] layers and hydrogen bonded H2O molecules. The cobalt atoms Co1 and Co2 are distorted octahedrally coordinated by the O atoms of two bridging trans‐H2O molecules and four bidentate adipate anions (Co1) and by the O atoms of two bridging trans‐H2O molecules and four monodentate H2O molecules (Co2), respectively. Equatorial bonds: d(Co1–O) = 2.048 Å (2 × ), 2.060 Å (2 × ); d(Co2–O) = 2.057 Å (2 × ), 2.072 Å (2 × ). Axial bonds: d(Co1–O) = 2.235 Å (2 × ); d(Co2–O) = 2.156 Å (2 × ).  相似文献   

20.
以间苯咪唑(1,3-bib)和间苯二甲酸(H2MPA)为配体,在温和的水热条件下,合成了Co(Ⅱ)的2个配位聚合物{[Co(H2O)2(1,3-bib)(MPA)]·H2O}n (1)和{[Co2(1,3-bib)2(MPA)2]·5H2O}n (2),分别用X-射线单晶衍射、元素分析、IR和热重等手段对它们进行了表征,结果表明,配位聚合物1为1D层状结构,属于正交晶系,Pnma空间群;配位聚合物2为双核2D结构,属于三斜晶系,P1空间群。在室温下研究了它们的光学性质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号