首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Contributions on the Thermal Behaviour of Anhydrous Phosphates. IX. Synthesis and Crystal Structure of Cr6(P2O7)4. A Pyrophosphate Containing Di- and Trivalent Chromium Cr6(P2O7)4 (Cr22+Cr43+(P2O7)4) can be obtained reducing CrPO4 by phosphorus (950°C, 48 h, 100 mg iodine as mineralizer). By means of chemical transport reactions (transport agent iodine; 1050 → 950°C) the compound has been separated from its neighbour phases (Cr2P2O7, CrP3O9) and crystallized (greenish, transparent crystals; edge length up to 0.3 mm). The crystal structure of Cr6(P2O7)4 (Spcgrp.: P-1; z = 1; a = 4.7128(8) Å, b = 12.667(3) Å, c = 7.843(2) Å, α = 89.65(2)°, β = 92.02(2)°, γ = 90.37(2) has been solved and refined from single crystal data (2713 unique reflections, 194 parameter, R = 0.035). Cr2+ is surrounded by six oxygen atoms which occupy the corners of an elongated octahedron (4 × dCr? O ≈? 2.04 Å; 2 × dCr? O ≈? 2.62 Å). The Cr3+ ions are also coordinated octahedraly (1.930 Å ≤ dCr? O ≤ 2.061 Å). The crystallographically independent pyrophosphate groups show nearly eclipsed conformation. The bridging angles (P? O? P) are 136.5° and 138.9° respectively.  相似文献   

2.
Synthesis, Crystal Structures, and Spectroscopic Characterization of NiP4O11 and CaNiP2O7 From melts single crystals of NiP4O11 and CaNiP2O7 have been grown. These allowed refinement of the crystal structures (NiP4O11: C1¯, Z = 8, a = 12, 753(4)Å, b = 12.957(3)Å, c = 10.581(4)Å, α = 89.42(2)°, β = 116.96(2)°, γ = 90.20(2)°, R1 = 0.027, wR2 = 0.072 for 3058 Io > 2σ (Io), 3291 independent reflections, 290 parameters; CaNiP2O7: P1¯, Z = 2, a = 6.433(3)Å, b = 6.536(4)Å, c = 6.515(2)Å, α = 66.4(2)°, β = 87.5(2)°, γ = 82.7(2)°, R1 = 0.026, wR2 = 0.062 for 1624 Io > 2σ (Io), 2189 independent reflections, 101 parameter) and measurement of polarized electronic absorption spectra in the uv/vis/nir region (6000—32000 cm—1). NiP4O11 is isotypic to the series of ultraphosphates MP4O11 (M = Mn, Fe, Co, Cu, Zn, Cd) that exhibit a two‐dimensional network formed from ten‐membered phosphate rings. CaNiP2O7 completes the series of diphosphates AMP2O7 (A: Ca, Sr, Ba; M = Cr — Zn) and is isotypic to CaCoP2O7. Ni2+ ions in both phosphates show distorted octahedral coordination. The electronic transitions associated with the chromophores [Ni2+O6] are nicely reproduced by calculations within the framework of the angular overlap model (AOM). The parametrisation scheme leads to eσ, norm(2.0Å) = 3690 cm—1 and B = 896 cm—1 (C/B = 4.2) for CaNiP2O7 and eσ, norm(2.0Å) = 4150 cm—1 and B = 948 cm—1 (C/B = 4.5) for NiP4O11o(CaNiP2O7) = 6800 cm—1; Δo(NiP4O11) = 7100 cm—1).  相似文献   

3.
Herein we report synthesis of a new brucite type copper hydroxide squarate, Cu3(OH)2(C4O4)2·4H2O [P21/c, a = 5.6437(4) Å, b = 12.8357(9) Å, c = 9.1507(6) Å, β = 95.892(1)° and Z = 2] by hydrothermal method, and its characterization by single crystal diffraction analysis as well as by IR spectroscopy. The rather wide spread of Cu–O bond lengths, can be primarily rationalised by the Jahn‐Teller effect, and secondarily by the connectivities of the CuO6 octahedra.  相似文献   

4.
The Crystal and the Electronic Structure of La2Li1/2Au1/2O4 The single crystal X‐ray investigation of the compound La2Li1/2AuIII1/2O4 yields a T′‐type structure (Nd2CuO4) with an ordered distribution of LiI and AuIII on the sites with square‐planar coordination (space group Ammm; a = 5.768 Å, b = 5.762 Å, c = 12.466 Å; c/a(b) = 2.165; a(Au–O) = 2.013(3) Å). Though CuIII possesses the same low‐spin d8‐configuration as AuIII, La2Li1/2Cu1/2O4 adopts the ordered T‐structure with strongly elongated CuO6 octahedra. The electronic and structural causes of the different behaviour are discussed.  相似文献   

5.
The blue tetranuclear CuII complexes {[Cu(bpy)(OH)]4Cl2}Cl2 · 6 H2O ( 1 ) and {[Cu(phen)(OH)]4(H2O)2}Cl4 · 4 H2O ( 2 ) were synthesized and characterized by single crystal X‐ray diffraction. ( 1 ): P 1 (no. 2), a = 9.240(1) Å, b = 10.366(2) Å, c = 12.973(2) Å, α = 85.76(1)°, β = 75.94(1)°, γ = 72.94(1)°, V = 1152.2(4) Å3, Z = 1; ( 2 ): P 1 (no. 2), a = 9.770(3) Å, b = 10.118(3) Å, c = 14.258(4) Å, α = 83.72(2)°, β = 70.31(1)°, γ = 70.63(1)°, V = 1252.0(9) Å3, Z = 1. The building units are centrosymmetric tetranuclear {[Cu(bpy)(OH)]4Cl2}2+ and {[Cu(phen)(OH)]4(H2O)2}4+ complex cations formed by condensation of four elongated square pyramids CuN2(OH)2Lap with the apical ligands Lap = Cl, H2O, OH. The resulting [Cu42‐OH)23‐OH)2] core has the shape of a zigzag band of three Cu2(OH)2 squares. The cations exhibit intramolecular and intermolecular π‐π stacking interactions and the latter form 2D layers with the non‐bonded Cl anions and H2O molecules in between (bond lengths: Cu–N = 1.995–2.038 Å; Cu–O = 1.927–1.982 Å; Cu–Clap = 2.563; Cu–Oap(OH) = 2.334–2.369 Å; Cu–Oap(H2O) = 2.256 Å). The Cu…Cu distances of about 2.93 Å do not indicate direct interactions, but the strongly reduced magnetic moment of about 2.74 B.M. corresponds with only two unpaired electrons per formula unit of 1 (1.37 B.M./Cu) and obviously results from intramolecular spin couplings (χm(T‐θ) = 0.933 cm3 · mol–1 · K with θ = –0.7 K).  相似文献   

6.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings.  相似文献   

7.
Synthesis, Structure, and Reactions of Vanadium Acid Esters VO(OR)3: Transesterification and Reaction with Oxalic Acid The reaction of tert.‐Butyl Vanadate VO(O‐tert.Bu)3 ( 1 ) with H2C2O4 in the primary alcohols ethanol and propanol results in the formation of (ROH)(RO)2OVV(C2O4)VVO(OR)2(HOR) (with R = C2H5 2 and R = C3H7 3 ). Compounds 2 and 3 are the first structurally characterized neutral, binuclear oxo‐oxalato‐complexes with pentavalent vanadium. The two vanadium atoms are connected by a bisbidentate oxalate group. The {VO6} coordination at each vanadium site is completed by a terminal oxo group, an alcohol ligand and two alcoxide groups. The binuclear molecules are connected to chains by hydrogen bonding. In the case of 2 a reversible isomorphic phase transition in the temperature range of –90 °C to –130 °C is observed. From methanolic solution the polymeric Methyl Vanadate [VO(OMe)3] ( 4 ) was obtained by transesterification. A report on the crystal structures of 1 , 2 and 3 as well as a redetermination of the structure of 4 is given. Crystal data: 1, orthorhombic, Cmc21, a = 16.61(2) Å, b = 9.274(6) Å, c = 10.784(7) Å, V = 1662(2) Å3, Z = 4, dc = 1.144 gcm–1; 2 (–90 ° C) , monoclinic, I2/a, a = 33.502(4) Å, b = 7.193(1) Å, c = 15.903(2) Å und β = 143.060(3)°, V = 2303(1) Å3, Z = 4, dc = 1.425 gcm–1; 2 (–130 ° C) , monoclinic, I2/a, a = 33.274(4) Å, b = 7.161(1) Å, c = 47.554(5) Å, β = 142.798(2)°, V = 6851(1) Å3, Z = 12, dc = 1.438 gcm–1; 3 , triklinic, P1, a = 9.017(5) Å, b = 9.754(5) Å, c = 16.359(9) Å, α = 94.87(2)°, β = 93.34(2)°, γ = 90.42(2)°, V = 1431(1) Å3, Z = 2, dc = 1.340 gcm–1; 4 , triklinic, P1, a = 8.443(2) Å, b = 8.545(2) Å, c = 9.665(2) Å, α = 103.202(5)°, β = 96.476(5)°, γ = 112.730(4)°, V = 610.2(2)Å3, Z = 4, dc = 1.742 gcm–1.  相似文献   

8.
Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXXIII [1] In2P2O7 an Indium(I)‐diphosphatoindate(III), and In4(P2O7)3 — Synthesis, Crystallization, and Crystal Structure Solid state reactions via the gas phase lead to the new mixed‐valence indium(I, III)‐diphosphate In2P2O7. Colourless single crystals of In2P2O7 have been grown by isothermal heating of stoichiometric amounts of InPO4 and InP (800 °C; 7d) using iodine as mineralizer. The structure of In2P2O7 [P21/c, a = 7.550(1) Å, b = 10.412(1) Å, c = 8.461(2) Å, b = 105.82(1)°, 2813 independent reflections, 101 parameter, R1 = 0.031, wR2 = 0.078] is the first example for an In+ cation in pure oxygen coordination. Observed distances d(InI‐O) are exceptionally long (dmin(InI‐O) = 2.82 Å) and support assumption of mainly s‐character for the lone‐pair at the In+ ion. Single crystals of In4(P2O7)3 were grown by chemical vapour transport experiments in a temperature gradient (1000 → 900 °C) using P/I mixtures as transport agent. In contrast to the isostructural diphosphates M4(P2O7)3 (M = V, Cr, Fe) monoclinic instead of orthorhombic symmetry has been found for In4(P2O7)3 [P21/a, a = 13.248(3) Å, b = 9.758(1) Å, c = 13.442(2) Å, b = 108.94(1)°, 7221 independent reflexes, 281 parameter, R1 = 0.027, wR2 = 0.067].  相似文献   

9.
Synthesis and Crystal Structure of KMgCu4V3O13 . Single crystals of KMgCu4V3O13 were prepared by supercooled melts. It crystallizes with monoclinic symmetry space group C–P21/m (Nr. 11), unit cell dimensions: a = 10.7144 Å, b = 6.0282 Å, c = 8.3365 Å, β = 98.075°, Z = 2. The crystal structure is closely related to the BaMg2Cu8O6O26 type. Cu2+ occurs in an unusual trigonal bipyramidal coordination.  相似文献   

10.
The blue copper complex compounds [Cu(phen)2(C6H8O4)] · 4.5 H2O ( 1 ) and [(Cu2(phen)2Cl2)(C6H8O4)] · 4 H2O ( 2 ) were synthesized from CuCl2, 1,10‐phenanthroline (phen) and adipic acid in CH3OH/H2O solutions. [Cu(phen)2‐ (C6H8O4)] complexes and hydrogen bonded H2O molecules form the crystal structure of ( 1 ) (P1 (no. 2), a = 10.086(2) Å, b = 11.470(2) Å, c = 16.523(3) Å, α = 99.80(1)°, β = 115.13(1)°, γ = 115.13(1)°, V = 1617.5(5) Å3, Z = 2). The Cu atoms are square‐pyramidally coordinated by four N atoms of the phen ligands and one O atom of the adipate anion (d(Cu–O) = 1.989 Å, d(Cu–N) = 2.032–2.040 Å, axial d(Cu–N) = 2.235 Å). π‐π stacking interactions between phen ligands are responsible for the formation of supramolecular assemblies of [Cu(phen)2(C6H8O4)] complex molecules into 1 D chains along [111]. The crystal structure of ( 2 ) shows polymeric [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains (P1 (no. 2), a = 7.013(1) Å, b = 10.376(1) Å, c = 11.372(3) Å, α = 73.64(1)°, β = 78.15(2)°, γ = 81.44(1)°, V = 773.5(2) Å3, Z = 1). The Cu atoms are fivefold coordinated by two Cl atoms, two N atoms of phen ligands and one O atom of the adipate anion, forming [CuCl2N2O] square pyramids with an axial Cl atom (d(Cu–O) = 1.958 Å, d(Cu–N) = 2.017–2.033 Å, d(Cu–Cl) = 2.281 Å; axial d(Cu–Cl) = 2.724 Å). Two square pyramids are condensed via the common Cl–Cl edge to centrosymmetric [Cu2Cl2N4O2] dimers, which are connected via the adipate anions to form the [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains. The supramolecular 3 D network results from π‐π stacking interactions between the chains. H2O molecules are located in tunnels.  相似文献   

11.
Ag6(VIVO)2(PO4)2(P2O7) was obtained by reaction of Ag3PO4 and (VO)2P2O7 (sealed ampoule, 550 °C, 3 d). The crystal structure of the new mixed ortho‐pyrophosphate was determined from X‐ray single‐crystal data [Pnma, Z = 4, a = 12.759(3) Å, b = 17.340(4) Å, c = 6.418(1) Å, R1 = 0.071, wR2 = 0.184 for 3174 unique reflections with Fo > 4σ(Fo), 141 variables]. Ag+ ions are located in between layers [(VIVO)2(PO4)2(P2O7)]6–. Equilibrium relations of the new phosphate to neighboring phases were determined. The electronic structure of the (VIV≡O)2+ group was investigated by polarized electronic absorption spectroscopy (ν̃1a = 9450 cm–1, ν̃1b = 9950 cm–1, ν̃2 = 14750 cm–1), EPR spectroscopy [X‐ and Q‐band, powder and single crystal, orthorhombic crystal g‐tensor with g1 = 1.9445(3), g2 = 1.9521(3), g3 = 1.9695(3)], and magnetic measurements (powder, μexp/μB = 1.71, Θp = –1.7 K).  相似文献   

12.
>From Small Fragments to New Poly‐alkoxo‐oxo‐metalate Derivatives: Syntheses and Crystal Structures of K4[VIV12O12(OCH3)16(C4O4)6], Cs10[VIV24O24(OCH3)32(C4O4)12][VIV8O8(OCH3)16(C2O4)], and M2[VIV8O8(OCH3)16(VIVOF4)] (M = [N(nBu)4] or [NEt4]) By solvothermal reaction of ortho‐vanadicacid ester [VO(OMe)3] with squaric acid and potassium or caesium hydroxide the compounds K4[VIV12O12(OCH3)16(C4O4)6] ( 2 ) and Cs10[VIV24O24(OCH3)32(C4O4)12][VIV8O8(OCH3)16(C2O4)] ( 3 ) could be syntesized. With tetra‐n‐butyl‐ or tetra‐n‐ethylammonium fluoride [N(nBu)4]2[VIV8O8(OCH3)16(VIVOF4)] ( 4 ) and [N(Et)4]2[VIV8O8(OCH3)16(VIVOF4)] ( 5 ) could be isolated. In 2 and 3 the corners of a tetrahedron or cube resp. are occupied by {(VO)3(OMe)4} groups and connected along the edges of the tetrahedron resp. cube by six or twelve resp. squarato‐groups. The octanuclear anions in the compounds 3 , 4 , and 5 are assumedly built up by fragments of the ortho‐vanadicacid ester [VO(OMe)3]. Around the anions C2O42— or VOF4 these oligormeric chains are closed to a ring . Crystal data: 2 , tetragonal, P43, a = 18.166(3)Å, c = 29.165(7)Å, V = 9625(3)Å3, Z = 4, dc = 1.469 gcm—3; 3 , orthorhombic, Pbca, a = 29.493(5)Å, b = 25.564(4)Å, c = 31.076Å, V = 23430(6)Å3, Z = 4, dc = 1.892 gcm—3; 4 , monoclinic, P21/n, a = 9.528(1)Å, b = 23.021(2)Å, c = 19.303(2)Å, β = 92.570(2)°, V = 4229.8(5)Å3, Z = 2, dc = 1.391 gcm—3; 5 , monoclinic, P21/n, a = 16.451(2)Å, b = 8.806(1)Å, c = 23.812(1)Å, β = 102.423(2)°, V = 3368.7(6)Å3, Z = 2, dc = 1.534 gcm—3.  相似文献   

13.
New Oxocuprates(I). On Cs3Cu5O4, Rb2KCu5O4, RbK2Cu5O4 and K3Cu5O4 Cs3Cu5O4 light yellow, powder as well as single crystals [a = 10.313(9), b = 7.630(1), c = 14.750(4) Å, β = 106.48(6)°], Rb2KCu5O4 [a = 9.724(2), b = 7.443(0), c = 14.246(2) Å, β = 106.78(8)°], RbK2Cu5O4 [a = 9.561(1), b = 7.411(0), c = 14.111(1) Å, β = 106.76(7)°] and K3Cu5O4 [a = 9.422(1), b = 7.364(1), c = 13.995(2) Å, β = 107.00(2)°] are new prepared. The colour of the powders becomes lighter according to the sequence showed above. K3Cu5O4 shows pale yellow. The Madelung Part of Lattice Energy, MAPLE, is calculated and discussed.  相似文献   

14.
Crystal Structures of Acid Hydrates and Oxonium Salts. XX. Oxonium Tetrafluoroborates H3OBF4, [H5O2]BF4, and [H(CH3OH)2]BF4 The crystal structures of three oxonium tetrafluoroborates were determined. H3OBF4, oxonium tetrafluoroborate proper, is triclinic with space group P1 , Z = 2 and the unit cell dimensions a = 4.758, b = 6.047, c = 6.352 Å and α = 80.40, β = 79.48, γ = 88.25° at ?26°C. Cations H3O+ and anions BF4? are linked by hydrogen bonds O? H…?F into ribbons of condensed rings. In [H5O2]BF4 (diaquohydrogen tetrafluoroborate, monoclinic, P21/c, Z = 4, a = 6.584, b = 9.725, c = 7.084 Å, β = 95.15° at ?100°C) the hydrogen bond in the cation H5O2+ is 2.412 Å short, asymmetric and approximately centered and the linking of cations and anions three-dimensional. In [H(CH3OH)2]BF4 (Bis(methanol)hydrogen tetrafluoroborate, monoclinic, P21/c, Z = 4, a = 5.197, b = 14.458, c = 9.318 Å, β = 94.61° at ?50°C) the cation [H(CH3OH)2]+ is characterized for the first time in a crystal structure with an again very short (2.394 Å), asymmetric and effectively centered hydrogen bond. By further hydrogen bonds cations and anions form only dimers of the formula unit of centrosymmetric cyclic structure.  相似文献   

15.
Alcoholysis of [Fe2(OtBu)6] as a Simple Route to New Iron(III)‐Alkoxo Compounds: Synthesis and Crystal Structures of [Fe2(OtAmyl)6], [Fe5OCl(OiPr)12], [Fe5O(OiPr)13], [Fe5O(OiBu)13], [Fe5O(OCH2CF3)13], [Fe5O(OnPr)13], and [Fe9O3(OnPr)21] · nPrOH New alkoxo‐iron compounds can be synthesized easily by alcoholysis of [Fe2(OtBu)6] ( 1 ). Due to different bulkyness of the alcohols used, three different structure types are formed: [Fe2(OR)6], [Fe5O(OR)13] and [Fe9O3(OR)21] · ROH. We report synthesis and crystal structures of the compounds [Fe5OCl(OiPr)12] ( 2 ), [Fe2(OtAmyl)6] ( 3 ), [Fe5O(OiPr)13] ( 4 ), [Fe5O(OiBu)13] ( 5 ), [Fe5O(OCH2CF3)13] ( 6 ), [Fe9O3(OnPr)21] · nPrOH ( 7 ) and [Fe5O(OnPr)13] ( 8 ). Crystallographic Data: 2 , tetragonal, P 4/n, a = 16.070(5) Å, c = 9.831(5) Å, V = 2539(2) Å3, Z = 2, dc = 1.360 gcm?3, R1 = 0.0636; 3 , monoclinic, P 21/c, a = 10.591(5) Å, b = 10.654(4) Å, c = 16.740(7) Å, β = 104.87(2)°, V = 1826(2) Å3, Z = 2, dc = 1.154 gcm?3, R1 = 0.0756; 4 , triclinic, , a = 20.640(3) Å, b = 21.383(3) Å, c = 21.537(3) Å, α = 82.37(1)°, β = 73.15(1)°, γ = 61.75(1)°, V = 8013(2) Å3, Z = 6, dc = 1.322 gcm?3, R1 = 0.0412; 5 , tetragonal, P 4cc, a = 13.612(5) Å, c = 36.853(5) Å, V = 6828(4) Å3, Z = 4, dc = 1.079 gcm?3, R1 = 0.0609; 6 , triclinic, , a = 12.039(2) Å, b = 12.673(3) Å, c = 19.600(4) Å, α = 93.60(1)°, β = 97.02(1)°, γ = 117.83(1)°, V = 2600(2) Å3, Z = 2, dc = 2.022 gcm?3, R1 = 0.0585; 7 , triclinic, , a = 12.989(3) Å, b = 16.750(4) Å, c = 21.644(5) Å, α = 84.69(1)°, β = 86.20(1)°, γ = 77.68(1)°, V = 4576(2) Å3, Z = 2, dc = 1.344 gcm?3, R1 = 0.0778; 8 , triclinic, , a = 12.597(5) Å, b = 12.764(5) Å, c = 16.727(7) Å, α = 91.94(1)°, β = 95.61(1)°, γ = 93.24(2)°, V = 2670(2) Å3, Z = 2, dc = 1.323 gcm?3, R1 = 0.0594.  相似文献   

16.
Synthesis and Crystal Structure of K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4), and Na(HSO4)(H3PO4) Mixed hydrogen sulfate phosphates K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4) and Na(HSO4)(H3PO4) were synthesized and characterized by X‐ray single crystal analysis. In case of K2(HSO4)(H2PO4) neutron powder diffraction was used additionally. For this compound an unknown supercell was found. According to X‐ray crystal structure analysis, the compounds have the following crystal data: K2(HSO4)(H2PO4) (T = 298 K), monoclinic, space group P 21/c, a = 11.150(4) Å, b = 7.371(2) Å, c = 9.436(3) Å, β = 92.29(3)°, V = 774.9(4) Å3, Z = 4, R1 = 0.039; K4(HSO4)3(H2PO4) (T = 298 K), triclinic, space group P 1, a = 7.217(8) Å, b = 7.521(9) Å, c = 7.574(8) Å, α = 71.52(1)°, β = 88.28(1)°, γ = 86.20(1)°, V = 389.1(8)Å3, Z = 1, R1 = 0.031; Na(HSO4)(H3PO4) (T = 298 K), monoclinic, space group P 21, a = 5.449(1) Å, b = 6.832(1) Å, c = 8.718(2) Å, β = 95.88(3)°, V = 322.8(1) Å3, Z = 2, R1 = 0,032. The metal atoms are coordinated by 8 or 9 oxygen atoms. The structure of K2(HSO4)(H2PO4) is characterized by hydrogen bonded chains of mixed HnS/PO4 tetrahedra. In the structure of K4(HSO4)3(H2PO4), there are dimers of HnS/PO4 tetrahedra, which are further connected to chains. Additional HSO4 tetrahedra are linked to these chains. In the structure of Na(HSO4)(H3PO4) the HSO4 tetrahedra and H3PO4 molecules form layers by hydrogen bonds.  相似文献   

17.
The reaction of ammonium heptamolybdate with hydrazine sulfate in an aqueous solution of glycine at room temperature yielded colorless crystals of (NH4)4[(NH3CH2CO)2(Mo8O28)] · 2 H2O. The crystal is monoclinic, space group C2/c (no. 15), a = 17.234 Å, b = 10.6892 Å, c = 18.598 Å, β = 108.280°, V = 3253.2 Å3, Z = 4. The crystal structure contains ammonium cations and isolated octamolybdate(4–) anions, [(NH3CH2CO)2(Mo8O28)]4–, with two zwitterionic glycine molecules as ligands.  相似文献   

18.
Structure and Thermal Behaviour of Gadolinium(III)-sulfate-octahydrate Gd2(SO4)3 · 8 H2O . Gd2(SO4)3 · 8 H2O crystallizes monoclinic with space group C2/c and the lattice constants a = 13.531(7), b = 6.739(2), c = 18.294(7) Å, β = 102.20(8)°. In the structure Gd is coordinated by 4 oxygen atoms of crystal water and 4 oxygens of sulfate giving rise to a distorted square antiprism. During DTA-TG-experiments the title compound first loses crystal water in a two-step mechanism in the temperature range 130–306°C. The resulting Gd2(SO4)3 is amorphous and recrystallization occurs in the range 380–411°C. The so-obtained low-temperature modification β-Gd2(SO4)3, undergoes a monotropic phase transition at about 750°C to the high-temperature form α-Gd2(SO4)3. The powder pattern of this modification was indexed based on monoclinic symmetry with space group C2/c and lattice constants a = 9.097(3), b = 14.345(5), c = 6.234(2) Å, β = 97.75(8)°. The hightemperature modification of gadolinium-sulfate shows decomposition to Gd2O2SO4 at 900°C and, subsequently, decomposition at 1 200°C yields the formation of C-Gd2O3.  相似文献   

19.
Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXXII. New Orthophosphates of Divalent Chromium — Mg3Cr3(PO4)4, Mg3, 75Cr2, 25(PO4)4, Ca3Cr3(PO4)4 and Ca2, 00Cr4, 00(PO4)4 Solid state reactions via the gas phase led in the systems A3(PO4)2 / Cr3(PO4)2 (A = Mg, Ca) to the four new compounds Mg3Cr3(PO4)4 ( A ), Mg3.75Cr2.25(PO4)4 ( B ), Ca3Cr3(PO4)4 ( C ), and Ca2.00Cr4.00(PO4)4 ( D ). These were characterized by single crystal structure investigations [( A ): P21/n, Z = 1, a = 4.863(2) Å, b = 9.507(4) Å, c = 6.439(2) Å, β = 91.13(6)°, 1855 independend reflections, 63 parameters, R1 = 0.035, wR2 = 0.083; ( B ): P21/a, Z = 2, a = 6.427(2) Å, b = 9.363(2) Å, c = 10.051(3) Å, β = 106.16(3)°, 1687 indep. refl., 121 param., R1 = 0.032, wR2 = 0.085; ( C ): P‐1, Z = 2, a = 8.961(1) Å, b = 8.994(1) Å, c = 9.881(1) Å, α = 104.96(2)°, β = 106.03(2)°, γ = 110.19(2)°, 2908 indep. refl., 235 param., R1 = 0.036, wR2 = 0.111; ( D ): C2/c, Z = 4, a = 17.511(2) Å, b = 4.9933(6) Å, c = 16.825(2) Å, β = 117.95(1)°, 1506 indep. refl., 121 param., R1 = 0.034, wR2 = 0.098]. The crystal structures contain divalent chromium on various crystallographic sites, each showing a (4+n)‐coordination (n = 1, 2, 3). For the magnesium compounds and Ca2.00Cr4.00(PO4)4 a disorder of the divalent cations Mg2+/Cr2+ or Ca2+/Cr2+ is observed. Mg3.75Cr2.25(PO4)4 adopts a new structure type, while Mg3Cr3(PO4)4 is isotypic to Mg3(PO4)2. Ca3Cr3(PO4)4 and Ca2.00Cr4.00(PO4) 4 are structurally very closely related and belong to the Ca3Cu3(PO4)4‐structure family. The orthophosphate Ca9Cr(PO4)7, containing trivalent chromium, has been obtained besides C and D .  相似文献   

20.
Structural Chemistry of PbBr2·C4H10O3 (Diethyleneglycol) Crystals of PbBr2·C4H10O3 have been synthesized and structurally characterized by single‐crystal X‐ray diffraction. PbBr2·C4H10O3 crystallizes monoclinic in space group P21/n (No. 14) with a = 9.370(1)Å, b = 10.045(1)Å, c = 21.090(1)Å, β = 98.98(1)° and Z = 8. The compound contains compact Pb—Br groups, which build colums parallel to [0 1 0] direction by Hydrogen Bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号