首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The non-empirical generalized Kirkwood, Unsöld, and the single-Δ Unsöld methods (with double-zeta quality SCF wave-functions) are used to calculate isotropic dispersion (and induction) energy coefficients C2n, with n ? 5, for interactions involving ground state CH4, C2H6, C3H8, n-C4H10 and cyclo-C3H6. Results are also given for the related multipole polarizabilities αl, multipole sums S1/(0) and S1(?1) which are evaluated using sum rules, and the permanent multipole moments. for l = 1 (dipole) to l = 3 (octupole). Estimates of the reliability of the non-empirical methods, for the type of molecules considered, are obtained by a comparison with accurate literature values of α1S1(?1) and C6. This, and the asymptotic properties of the multipolar expansion of the dispersion energy, the use to discuss recommended representation for the isotropic long range interaction energies through R?10 where R is the intermolecular separation.  相似文献   

2.
Four new thioantimonates(III) with compositions [(C3H10NO)(C3H10N)][Sb8S13] ( 1 ) (C3H9NO = 1‐amino‐3‐propanol, C3H9N = propylamine), [(C2H8NO)(C2H8N)(CH5N)][Sb8S13] ( 2 ) (C2H7NO = ethanolamine, C2H7N = ethylamine, CH5N = methylamine), [(C6H16N2)(C6H14N2)][Sb6S10] ( 3 ) (C6H14N2 = 1,2‐diaminocyclohexane) and [C8H22N2][Sb4S7] ( 4 ) (C8H20N2 = 1,8‐diaminooctane) were synthesized under solvothermal conditions. Compound 1 : triclinic space group P$\bar{1}$ , a = 6.9695(6) Å, b = 13.8095(12) Å, c = 18.0354(17) Å, α = 98.367(11), β = 96.097(11) and γ = 101.281(11)°; compound 2 : monoclinic space group P21/m, a = 7.1668(5), b = 25.8986(14), c = 16.0436(11) Å, β = 96.847(8)°; compound 3 : monoclinic space group P21/n, a = 11.6194(9), b = 10.2445(5) Å, c = 27.3590(18) Å, β = 91.909(6)°; compound 4 : triclinic space group P$\bar{1}$ , a = 7.0743(6), b = 12.0846(11), c = 13.9933(14) Å, α = 114.723(10), β = 97.595(11), γ = 93.272(11)°. The main structural feature of the two atoms thick layered [Sb8S13]2– anion in 1 are large nearly rectangular pores with dimensions 11.2 × 11.7 Å. The layers are stacked perpendicular to [100] to form tunnels being directed along [100]. In contrast to 1 the structure of 2 contains a [Sb8S13]2– chain anion with Sb12S12 pores measuring about 8.9 × 11.5 Å. Only if longer Sb–S distances are considered as bonding interactions a layered anion is formed. The chain anion [Sb6S10]2– in compound 3 is unique and is constructed by corner‐sharing SbS3 pyramids. Two symmetry‐related single chains consisting of alternating SbS3 units and Sb3S3 rings are bound to Sb4S4 rings in chair conformation. Finally, in the structure of 4 the SbS3 and SbS4 moieties are joined corner‐linked to form a chain of alternating SbS4 units and (SbS3)3 blocks. Neighboring chains are connected into sheets that contain relatively large Sb10S10 heterorings. The sheets are further connected by sulfur atoms generating four atoms thick double sheets.  相似文献   

3.
Kinetics for reactions of phenoxy radical, C6H5O, with itself and with O3 were examined at 298 K and low pressure (1 Torr) using discharge flow coupled with mass spectrometry (DF/MS). The rate constant for the phenoxy radical self‐reaction was determined to be k1 = (1.49 ± 0.53) × 10−11 cm3 molecule−1 s−1 defined by d[C6H5O]/dt=−2 k1[C6H5O]2. The rate constant for the C6H5O reaction with O3 was measured to be k2 = (2.86 ± 0.35) × 10−13 cm3 molecule−1 s−1, which may be a lower limit value. Because of much higher atmospheric abundance of ozone than that of both NO and phenoxy, the reaction of C6H5O with ozone may represent the principal fate of the phenoxy radical in the atmosphere. Products from reaction of C6H5O + C6H5O, NO, and NO2 were also investigated, and (C6H5O)2 (m/e = 186), C6H5O(NO) (m/e = 123), and C6H5O(NO2) (m/e = 139) adducts were observed as products for the reactions of C6H5O with itself, NO, and NO2, respectively. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 65–72, 1999  相似文献   

4.
Herein, we describe the synthesis of a carborane-supported octanuclear palladacycle complex, Pd8(o-C2B10H10CS2CH3)4Cl4(CH3CN)4 (complex 1 ), with B(3)–H activations on o-carborane ligand. The substitution reaction of 1 has been explored, and three of its substituted complexes Pd8(o-C2B10H10CS2CH3)4Cl4(L)4 (L = tBuNC, 2 ; L = C5H5N, 3 ; L = C4H8S, 4 ) have been synthesized. The m- and p-carborane disubstituted ligands m- and p-C2B10H10(CS2CH3)2 (ligands 5 and 6 ) as well as their B—H activated carborane complexes [m-C2B10H9(CS2CH3)2PdCl] ( 7 ) and [p-C2B10H8(CS2CH3)2][PdCl(tBuNC)]2 ( 8 ) have also been synthesized by the similar method. All of these complexes have been characterized, including X-ray single crystal diffraction, NMR spectroscopy, IR spectroscopy and elemental analysis methods.   相似文献   

5.
The synthesis of ansa complexes has been studied intensively owing to their importance as homogeneous catalysts and as precursors of metal‐containing polymers. However, paramagnetic non‐metallocene derivatives are rare and have been limited to examples with vanadium and titanium. Herein, we report an efficient procedure for the selective dilithiation of paramagnetic sandwich complex [Cr(η5‐C5H5)(η6‐C6H6)], which allows the preparation of a series of [n]chromoarenophanes (n=1, 2, 3) that feature silicon, germanium, and tin atoms at the bridging positions. The electronic and structural properties of these complexes were probed by X‐ray diffraction analysis, cyclic voltammetry, and by UV/Vis and EPR spectroscopy. The spectroscopic parameters for the strained and less strained complexes (i.e., with multiple‐atom linkers) indicate that the unpaired electron resides primarily in a d orbital on chromium(I); this result was also supported by density functional theory (DFT) calculations. We did not observe a correlation between the experimental UV/Vis and EPR data and the degree of molecular distortion in these ansa complexes. The treatment of tin‐bridged complex [Cr(η5‐C5H4)(η6‐C6H5)SntBu2] with [Pt(PEt3)3] results in the non‐regioselective insertion of the low‐valent Pt0 fragment into the Cipso? Sn bonds in both the five‐ and six‐membered rings, thereby furnishing a bimetallic complex. This observed reactivity suggests that ansa complexes of this type are promising starting materials for the synthesis of bimetallic complexes in general and also underline their potential to undergo ring‐opening processes to yield new metal‐containing polymers.  相似文献   

6.
The dihydride Ru(C6Me6)[PH(C6H11)2]H2 is synthesized in high yield by reducing Ru(C6Me6)[PH(C6H11)2]Cl2 with Na[AlH2(OCH2CH2OMe)2]. In benzene it loses hydrogen under UV irradiation to give Ru(C6Me6)[PH(C6H11(2]H(C6H5).  相似文献   

7.
Chloroselenates(IV): Synthesis, Structure, and Properties of [As(C6H5)4]2Se2Cl10 and [As(C6H5)4]Se2Cl9 The Se2Cl102? and Se2Cl9? anions were prepared, as the first dinuclear haloselenates(IV), from the reaction of (SeCl4)4 with stoichiometric quantities of chloride ions in POCl3 solutions; they were isolated as yellow crystalline As(C6H5)4+ salts. Complete X-ray structural analyses at ?130°C of [As(C6H5)4]2Se2Cl10 ( 1 ) (space group P1 , a = 10.296(7), b = 11.271(6), c = 12.375(8) Å, = 74.17(5)°, α = 81.38(5)°, β = 67.69(4)°, V = 1276 Å3) and of [As(C6H5)4]Se2Cl9 ( 2 ) (space group P21/n, a = 12.397(5), b = 17.492(6), c = 14.235(4) Å, α 93.25(3)°, V = 3082 Å3) show in both cases two distorted octahedral SeCl6 groups connected through a common edge in 1 and a common face in 2 . The terminal Se? Cl bonds (average 2.317 Å in 1 , 2.223 Å in 2 ) are much shorter than the Se? Cl bridges (av. 2.661 Å in 1 , 2.652 Å in 2 ). The stereochemical activity of the SeIV lone electron pair causes severe distortion of the central Se2Cl2 ring in the centrosymmetric Se2Cl102? ion. The vibrational spectra of the anions are reported.  相似文献   

8.
The kinetics of the C2H5 + Cl2, n‐C3H7 + Cl2, and n‐C4H9 + Cl2 reactions has been studied at temperatures between 190 and 360 K using laser photolysis/photoionization mass spectrometry. Decays of radical concentrations have been monitored in time‐resolved measurements to obtain reaction rate coefficients under pseudo‐first‐order conditions. The bimolecular rate coefficients of all three reactions are independent of the helium bath gas pressure within the experimental range (0.5–5 Torr) and are found to depend on the temperature as follows (ranges are given in parenthesis): k(C2H5 + Cl2) = (1.45 ± 0.04) × 10?11 (T/300 K)?1.73 ± 0.09 cm3 molecule?1 s?1 (190–359 K), k(n‐C3H7 + Cl2) = (1.88 ± 0.06) × 10?11 (T/300 K)?1.57 ± 0.14 cm3 molecule?1 s?1 (204–363 K), and k(n‐C4H9 + Cl2) = (2.21 ± 0.07) × 10?11 (T/300 K)?2.38 ± 0.14 cm3 molecule?1 s?1 (202–359 K), with the uncertainties given as one‐standard deviations. Estimated overall uncertainties in the measured bimolecular reaction rate coefficients are ±20%. Current results are generally in good agreement with previous experiments. However, one former measurement for the bimolecular rate coefficient of C2H5 + Cl2 reaction, derived at 298 K using the very low pressure reactor method, is significantly lower than obtained in this work and in previous determinations. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 614–619, 2007  相似文献   

9.
The temperature dependence of the ratios of the rate constants k(C5H10)/k(C6H12) and k(C6H12)/k(C6D12) for the reaction of the cycloalkanes C5H10, C6H12, and C6D12 with OH+ cations in the system (NH4)2S2O8 (0.1 mol/kg)-H2SO4 (94.4 mass %) in the 6–50 °C range has been studied. The activation energies found E(C6H12) − E(C5H10) = − 5.3 ± 0.3 and E(C6D12) − E(C6H12) = 7.9 ± 0.7 (kJ/mol) permits the comparison of OH+ to a group of reagents (NO+2, Pd2+, HSO+3) which interact with the C-H bond via an electrophilic substitution mechanism. Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 44, No. 6, pp. 354–358, November–December, 2008.  相似文献   

10.
Turquoise crystals of the title salt, propyl­ammonium di‐μ‐thio‐1:2κ4S‐di­thio‐2κ2S‐tris(2‐amino­ethyl)­amine‐1κ4N‐anti­mony(V)­nickel(II), (C3H10N)[NiSbS4(C6H18N4)] or [PAH][Ni(tren)SbS4] [where tren is tris(2‐amino­ethyl)­amine and PA is propyl­amine], were synthesized under solvothermal conditions by reacting [Ni(tren)2]Cl2, Sb and S in a solution of PA. The NiII ion is octahedrally surrounded by four N atoms of the tetradentate tren mol­ecule and by two S atoms of the tetrahedral [SbVS4]3? anion, thus forming the anionic [Ni(tren)SbS4]? part of the compound. Charge balance is achieved through the PAH+ cation. An extended intermolecular hydrogen‐bonding network is observed between the anion and the cation.  相似文献   

11.
IR photodissociation spectra of mass‐selected clusters composed of protonated benzene (C6H7+) and several ligands L are analyzed in the range of the C? H stretch fundamentals. The investigated systems include C6H7+? Ar, C6H7+? (N2)n (n=1–4), C6H7+? (CH4)n (n=1–4), and C6H7+? H2O. The complexes are produced in a supersonic plasma expansion using chemical ionization. The IR spectra display absorptions near 2800 and 3100 cm?1, which are attributed to the aliphatic and aromatic C? H stretch vibrations, respectively, of the benzenium ion, that is, the σ complex of C6H7+. The C6H7+? (CH4)n clusters show additional C? H stretch bands of the CH4 ligands. Both the frequencies and the relative intensities of the C6H7+ absorptions are nearly independent of the choice and number of ligands, suggesting that the benzenium ion in the detected C6H7+? Ln clusters is only weakly perturbed by the microsolvation process. Analysis of photofragmentation branching ratios yield estimated ligand binding energies of the order of 800 and 950 cm?1 (≈9.5 and 11.5 kJ mol?1) for N2 and CH4, respectively. The interpretation of the experimental data is supported by ab initio calculations for C6H7+? Ar and C6H7+? N2 at the MP 2/6‐311 G(2df,2pd) level. Both the calculations and the spectra are consistent with weak intermolecular π bonds of Ar and N2 to the C6H7+ ring. The astrophysical implications of the deduced IR spectrum of C6H7+ are briefly discussed.  相似文献   

12.
Abstract

A series of 1,3-dihydro-2λ4-benzotellurole-2,2-diyl di-thiocarbamates C8H8TeR2 and C8H8TeIR ( RS 2CNC5H10, S2CNHC6H5, S2CNC4H8O) have been synthesised by the reactions of C8H8TeI2 with the corresponding ammonium salts of piperidine-, aniline- and morpholine- dithiocarbamates in 1:1 and 1:2 molar ratio, respectively. They have been characterized by FT-IR and (1H, 13C) NMR spectroscopy. The reaction of C8H8TeI2 with (NH4S2CNC5H10) in 1:2 molar ratio gives C8H8Te(S2CNC5H10)2 [IR, (1H, 13C)NMR evidence] and X-ray quality crystals of Te(S2CNC5H10)2 in very low yield, demonstrating the formation of the first Te–C bond-cleaved product.The monomers of Te(S2CNC5H10)2 are connected through intermolecular Te…S secondary bonds and it exists as a dimer in the solid state. These dimers are interconnected through intermolecular S…S secondary bonds to yield 3D-supramolecular network.  相似文献   

13.
A series of arylantimony ferrocenecarboxylates with the formula (C5H5FeC5H4CO2)nSbAr(5?n) (n = 1, 2; Ar = C6H5, 4‐CH3C6H4, 3‐CH3C6H4, 2‐CH3C6H4, 4‐ClC6H4, 4‐FC6H4) were synthesized and characterized by elemental analysis, IR, 1H NMR and mass spectra. The crystal structures of (C5H5FeC5H4CO2)2Sb(4‐CH3C6H4)3 and C5H5FeC5H4CO2SbPh4 were determined by X‐ray diffraction. Four human neoplastic cell lines (HL‐60, Bel‐7402, KB and Hela) were used to screen these compounds. The results indicate that these compounds at 10 µM show certain in vitro antitumor activities. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
In framework molecular cations and radical cations of adamantane C10H m q+ and also in polyhedral molecules and molecular ions C5H5 +, C6H6 2 +, B5H9, and B10H10 2 -, the charge density of valence electrons in the central areas of C n and B n cavities and faces is significant. In the molecule of adamantane C10H16, the valence electron density in central areas of the cavity and faces of the C10 framework is small as compared to the electron density along its edges C-C. These distinctions are due to the fact that, in the electronic structure of C n H q m cations and radical cations and also of B n H m molecules and molecular ions, there is an additional orbital interaction involving vacant valence orbitals of C+ or B (orbital-reduntant bonds); the absence of vacant valence orbitals of C atoms in neutral adamantane molecule excludes additional orbital interactions in excess of C-H and C-C.  相似文献   

15.
A new salt, (PPN+)2(C702?) ? 2 C6H4Cl2 ( 1 ), which contains C702? dianions, has been obtained as single crystals (PPN+=bis(triphenylphosphine)iminium cation). The C702? dianions form polymeric zigzag (C702?)n chains, in which the fullerene units are bonded through single C? C bonds of length 1.581(5)–1.586(6) Å. The distance between the centers of neighboring C702? units is 10.441 Å. The optical and magnetic properties of (C702?)n have also been studied. Decreasing the symmetry of C70 in the polymer activate about 20 new IR bands in addition to the 10 IR‐active bands of the starting C70. The polymeric structure shows absorptions in the visible and NIR regions, with three main bands at 890, 1200, and 1550 nm, instead of one band of isolated C702? dianions at 1165–1184 nm. We concluded that the (C702?)n polymer was diamagnetic, with a negative molar magnetic susceptibility of ?3.82×10?4 emu mol?1 per C702? dianion. The polymer is EPR silent and a weak narrow EPR signal in salt 1 is due to impurities, which only constitute 0.84 % of spin S=1/2 of the total amount of fullerene C70.  相似文献   

16.
From the mass-analysed ion kinetic energy spectra of labelled ions, kinetic energy releases and thermodynamic data, it is proved that protonated n-propylbenzene (1) isomerizes into protonated isopropyl benzene (2). It is also shown that the dissociation of the less energetic metastable ions of (2), leading to [iso-C3H7]+ and [C6H7]+ product ions, is preceded by H exchange. This H exchange involves two interconverting ion-neutral complexes [C6H6, iso-C3H7+] (2π) and [C6H7+, C3H6] (2α).  相似文献   

17.
Pulsed laser photolysis, time-resolved laser-induced fluorescence experiments have been carried out on the reactions of CN radicals with CH4, C2H6, C2H4, C3H6, and C2H2. They have yielded rate constants for these five reactions at temperatures between 295 and 700 K. The data for the reactions with methane and ethane have been combined with other recent results and fitted to modified Arrhenius expressions, k(T) = A′(298) (T/298)n exp(?θ/T), yielding: for CH4, A′(298) = 7.0 × 10?13 cm3 molecule?1 s?1, n = 2.3, and θ = ?16 K; and for C2H6, A′(298) = 5.6 × 10?12 cm3 molecule?1 s?1, n = 1.8, and θ = ?500 K. The rate constants for the reactions with C2H4, C3H6, and C2H2 all decrease monotonically with temperature and have been fitted to expressions of the form, k(T) = k(298) (T/298)n with k(298) = 2.5 × 10?10 cm3 molecule?1 s?1, n = ?0.24 for CN + C2H4; k(298) = 3.4 × 10?10 cm3 molecule?1 s?1, n = ?0.19 for CN + C3H6; and k(298) = 2.9 × 10?10 cm3 molecule?1 s?1, n = ?0.53 for CN + C2H2. These reactions almost certainly proceed via addition-elimination yielding an unsaturated cyanide and an H-atom. Our kinetic results for reactions of CN are compared with those for reactions of the same hydrocarbons with other simple free radical species. © John Wiley & Sons, Inc.  相似文献   

18.
The kinetics of C6H5 reactions with n‐CnH2n+2 (n = 3, 4, 6, 8) have been studied by the pulsed laser photolysis/mass spectrometric method using C6H5COCH3 as the phenyl precursor at temperatures between 494 and 1051 K. The rate constants were determined by kinetic modeling of the absolute yields of C6H6 at each temperature. Another major product C6H5CH3 formed by the recombination of C6H5 and CH3 could also be quantitatively modeled using the known rate constant for the reaction. A weighted least‐squares analysis of the four sets of data gave k (C3H8) = (1.96 ± 0.15) × 1011 exp[?(1938 ± 56)/T], and k (n‐C4H10) = (2.65 ± 0.23) × 1011 exp[?(1950 ± 55)/T] k (n‐C6H14) = (4.56 ± 0.21) × 1011 exp[?(1735 ± 55)/T], and k (n?C8H18) = (4.31 ± 0.39) × 1011 exp[?(1415 ± 65)T] cm3 mol?1 s?1 for the temperature range studied. For the butane and hexane reactions, we have also applied the CRDS technique to extend our temperature range down to 297 K; the results obtained by the decay of C6H5 with CRDS agree fully with those determined by absolute product yield measurements with PLP/MS. Weighted least‐squares analyses of these two sets of data gave rise to k (n?C4H10) = (2.70 ± 0.15) × 1011 exp[?(1880 ± 127)/T] and k (n?C6H14) = (4.81 ± 0.30) × 1011 exp[?(1780 ± 133)/T] cm3 mol?1 s?1 for the temperature range 297‐‐1046 K. From the absolute rate constants for the two larger molecular reactions (C6H5 + n‐C6H14 and n‐C8H18), we derived the rate constant for H‐abstraction from a secondary C? H bond, ks?CH = (4.19 ± 0.24) × 1010 exp[?(1770 ± 48)/T] cm3 mol?1 s?1. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 49–56, 2004  相似文献   

19.
We report the synthesis of [n]manganoarenophanes (n=1, 2) featuring boron, silicon, germanium, and tin as ansa‐bridging elements. Their preparation was achieved by salt‐elimination reactions of the dilithiated precursor [Mn(η5‐C5H4Li)(η6‐C6H5Li)]?pmdta (pmdta=N,N,N′,N′,N′′‐pentamethyldiethylenetriamine) with corresponding element dichlorides. Besides characterization by multinuclear NMR spectroscopy and elemental analysis, the identity of two single‐atom‐bridged derivatives, [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] and [Mn(η5‐C5H4)(η6‐C6H5)SiPh2], could also be determined by X‐ray structural analysis. We investigated for the first time the reactivity of these ansa‐cyclopentadienyl–benzene manganese compounds. The reaction of the distannyl‐bridged complex [Mn(η5‐C5H4)(η6‐C6H5)Sn2tBu4] with elemental sulfur was shown to proceed through the expected oxidative addition of the Sn?Sn bond to give a triatomic ansa‐bridge. The investigation of the ring‐opening polymerization (ROP) capability of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] with [Pt(PEt3)3] showed that an unexpected, unselective insertion into the Cipso?Sn bonds of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] had occurred.  相似文献   

20.
The o‐substituted hybrid phenylphosphines, PPh2(o‐C6H4NH2) and PPh2(o‐C6H4OH), could be deprotonated with LDA or n‐BuLi to yield PPh2(o‐C6H4NHLi) and PPh2(o‐C6H4OLi), respectively. When added to a solution of (η5‐C5H5)Fe(CO)2I at room temperature, these two lithiated reagents produce a chelated neutral complex 1 (η5‐C5H5)Fe(CO)[C(O)NH(o‐C6H4)PPh2C,P‐η2] for the former and mainly a zwitterionic complex 2 , (η5‐C5H5)Fe+(CO)2[PPh2(o‐C6H4O?)] for the latter. Complex 1 could easily be protonated and then decarbonylated to give 4 [(η5‐C5H5)Fe(CO){NH2(o‐C6H4)PPh2N,P‐η2}+]. Complexes 1 and 4‐I have been crystallographically characterized with X‐ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号