共查询到20条相似文献,搜索用时 15 毫秒
1.
Preparation, Crystal Structure, and IR-spectroscopic Investigation of Phosphorus Nitride Imide, HPN2 Pure and fine crystalline phosphorus nitride imide (HPN2) is obtained by heterogeneous ammonolysis of P3N5 with gaseous NH3 (T = 580°C, p = 30 bar, 6 d). X-ray powder diffraction data has been used to refine the crystal structure of HPN2 by the Rietveld full-profile technique (I4 2d; a = 461.82(2) pm, c = 702.04(3) pm; Z = 4; 41 reflections observed, 17° < 2Θ < 125°, CuKα1, germanium monochromator; R(wp) = 0.072, R(I,hkl) = 0.048). In the solid HPN2 contains a three-dimensional framework of corner-sharing PN4-tetrahedra (P N: 159.9(4) pm; P N P: 130.1(4)°. The hydrogen atoms are covalently bonded to half of the nitrogen atoms. The IR spectrum exhibits six vibrational modes v(N H): 3224; vas(PNP): 1330, 1223; vas(PNHP): 971, 901: δ(PNP): 531 cm−1). 相似文献
2.
Synthesis and Crystal Structure of NaBi2AuO5 NaBi2AuO5 was obtained by hydrothermal reaction of ‘Bi2O5’, Au2O3 · 2H2O and saturated aqueous NaOH solution at temperatures from 300 to 600°C and oxygen pressure from 3 × 108 to 6 × 108 Pa for the first time. The crystal structure (P4 b2; a = 1 220.02(6) pm; b = 386.68(3) pm; Z = 4; Rw = 0.022) consists of bisphenoidic distorted AuO4 groups, which are stacked in c-direction. They are connected by square pyramidal BiO5 units. Sodium is occupying holes within the Au/Bi/O framework thus formed. 相似文献
3.
Franz Andreas Mautner Harald Krischner Christoph Kratky 《Monatshefte für Chemie / Chemical Monthly》1988,119(11):1245-1249
[N(CH3)4]Ca(N3)3,M=240.29, was prepared from aqueous solutions of tetramethylammoniumazide with calciumazide at 298 K. The crystals are tetragonala=936.6(7) pm,c=694.7(5)pm, space group P4/nmm,Z=2, (x)=1.31Mgm–3. The crystal structure was determined by single crystal x-ray diffraction (234 Mo-K-reflections, =0.469 mm–1,R=0.064). Calcium is octahedrally coordinated to six azide groups. The octahedra are connected via azide groups to a threedimensional array with the complex ammonium ions between. The terminal nitrogen atoms of the azide groups and the methyl groups are considerably disordered. 相似文献
4.
Synthesis and Crystal Structure of Tetrakis(pentafluorophenylamino)silane Colourless single-crystals of Tetrakis(pentafluorophenylamino) silane were obtained from the reaction of SiCl4 with monolithiated pentafluoroaniline at low temperatures. The aminosilane has been characterized by various spectroscopic methods and its crystal structure has been determined by x-ray diffraction (for details see “Inhaltsübersicht”). Thermal condensation has not been achieved. However, reaction of silicon(IV)-chloride with pentafluoroaniline in the presence of triethylamine yielded the respective tricyclosilazane. 相似文献
5.
Preparation, Crystal Structure, and Properties of Potassium Hydrogen Cyanamide For the preparation of KHCN2 melamine has been reacted with potassium amide in liquid ammonia. After evaporation of the solvent the resulting solid has been transformed at 210°C. KHCN2 (P212121, a = 708.7(2), b = 909.0(2), c = 901.4(2) pm, Z = 8, R = 0.039, wR = 0.016) is yielded as a coarse crystalline product. In the solid K+ and HCN ions occur. As expected two significantly differing bond-distances C? N (117.3(5) pm) and HN? C (128.7(5) pm) have been found in the anion. According to IR-spectroscopy a non linear group N? C? N (174.4(4)°) is observed. 相似文献
6.
Preparation and Crystal Structure of CsBO2 Colourless single crystals of CsBO2 have been prepared from intimate mixtures of CsO0.57 and B2O3 (Cs:B = 3.2:1.0; 600°C, 38 d). The structure determination from fourcircle diffractometer data (MoK, 443 Io (h k l), R = 3.1%, Rw = 2.0%) confirms the isotypy with NaBO2 and KBO2: space group R 3 c; a = 1 363.7(2) pm, c = 836.5(2) pm; Z = 18. A characteristic structure unit is the planar cyclic anion [B3O6]3?. Effective Coordination Numbers (ECoN), Mean Fictive Ionic Radii (MEFIR), the Madelung Part of Lattice Energy (MAPLE) and the Charge Distribution (CHARDI) are calculated and discussed. 相似文献
7.
Preparation, Crystal Structure, and Properties of KLi2As The novel arsenide KLi2As has been synthesized either from the elements or from mixtures of the binary components Li3As and K3As in sealed Nb ampoules at 823 K and 623 K, respectively. It crystallizes in the space group Pmmn (no. 59) with a = 445.8(9); b = 671.5(11); c = 627.0(12) pm and Z = 2 formula units. The metallic reflecting silvercoloured platelets hydrolize rapidly under wet air. The compound (Pearson code oP8) is isopuntal with BaLi2Si and an intermediate between the Li3N and the Na3As type of structure. Potassium is distorted tetrahedrally coordinated by four As atoms (d(K? As) = 355 and 367 pm), arsenic by four potassium and six lithium atoms (d(As? K) = 355–367 pm; d(As? Li) = 260–265 pm) in form of a sphenocorona. Lithium is threefold coordinated (distorted trigonal planar) by arsenic and this unit is enveloped by a monocapped trigonal prism build by three lithium and four potassium atoms. 相似文献
8.
Synthesis and Crystal Structure of HfOS On attempts to prepare binary and ternary hafnium sulfides a small quantity of single crystals was obtained which could be identified as HfOS. The new compound is cubic, space group P213 with a = 5.6824(6) Å. It is isostructural with the cubic form o ZrOS. In order to refine the structure parameters intensity measurements were carried out by means of a four-circle single crystal diffractometer. 相似文献
9.
Na5Br(OH)4: Synthesis and Structure of a Compound in the System NaOH/NaBr The pseudobinary system NaOH/NaBr is investigated by X-ray methods. The structure of the compound Na5Br(OH)4 was solved by single crystal data: Na5Br(OH)4: Pnma, Z = 8, a = 11.846(2) Å, b = 18.782(4) Å, c = 6.431(1) Å, Z(Fo) = 1 202 with (Fo)2 ≥ 3σ(Fo)2, Z(parameter) = 100, R/Rw = 0.030/0.035 The compound crystallizes in a new type of structure. Pairs of octahedra around O by 5 Na and 1 H to [Na5(OH)]2 are orientated in such a way to one another that two ions OH? form a parallelogram hinting to unusual bent hydrogen bridge bonding. 相似文献
10.
Preparation and Crystal Structure of Lithiumhydrogensulfide, LiHS Lithiumhydrogensulfide, LiHS, is prepared from lithiumamide, LiNH2, by reaction with liquid hydrogensulfide. At 150°C the solubility of LiHS in H2S is sufficient for the growth of single crystals in a temperature gradient within the autoclaves used. The X-ray structure determination at 295 K is characterized by the following data: Lithium occupies tetrahedral sites in a distorted cubic close-packed arrangement of S; in PtS sulfur occupies tetrahedral sites in a similar way in a distorted close packing of Pt. Hydrogen atoms of the HS??ions are dynamically disordered in a split position linearly bound to S. At 228 K a thermal effect occurs in DSC-measurements indicating that below this temperature the HS??ion has fixed positions. 相似文献
11.
12.
Claus Hadenfeldt Hans-Ulrich Terschüren Wolfgang Hnle Liane Schrder Hans Georg Von Schnering 《无机化学与普通化学杂志》1993,619(5):843-848
Chemistry and Structural Chemistry of Phosphides and Polyphosphides. 58. Tetrabariumtriphosphide, Ba4P3: Preparation and Crystal Structure Ba4P3 is obtained from the elements in the molar ratio 4:3 or by reaction of Ba3P2 and Ba5P4 in the molar ratio 1:1 (steel ampoules with inner corundum crucibles; 1 490 K). The greyish black, easily hydrolysing compound crystallizes in a new structure type oP56. The structure shows two crystallographically independent dumbbells P24? (d(P? P) = 225 and 232 pm) and isolated ions P3? corresponding to (Ba2+)8(P24?)4(P3?)4. The partial structure of the Ba atoms forms a complex network of trigonal prisms with tetrahedral and square pyramidal holes, as well as polyhedra with 14 faces (CN 10) which are icosahedron derivatives. The P3? anions center trigonal prisms and the 14 face polyhedron. The P-atoms of the P24? dumbbells center neighboring trigonal prisms with common square faces. (Pbam (no. 55); a = 1 325.4(2) pm, b = 1 256.2(2) pm, c = 1 127.3 pm; Z = 8). 相似文献
13.
Synthesis and Crystal Structure of Tl2PdCl4 Single crystals of Tl2PdCl4 can be obtained by hydrothermal synthesis [1, 2]. They show tetragonal symmetry with space group P4/mmm (No. 123). The lattice parameters are a = 7.163(1) Å and c = 4.282 (1) Å. The atomic arrangement of Tl2PdCl4 is explored by X‐ray crystal structure analysis. Tl2PdCl4 is isotypic with K2PtCl4. 相似文献
14.
Uwe Zachwieja 《无机化学与普通化学杂志》1993,619(6):1095-1097
Single-Crystal Growth and Structure Refinement of RbAu and CsAu Single-crystals of RbAu and CsAu were obtained by the reaction of the alkalimetal azides with gold-powder at 400°C. The structures were determined from X-ray single-crystal diffraktometer data: space group Pm3m, Z = 1; RbAu, a = 4.098(1) Å, R/Rw(w = 1) = 0.011/0.011, N(Fo2) ≥ 3σ(Fo2) = 41 and N(var.) = 4; CsAu, a = 4.258(1) Å, R/Rw(w = 1) = 0.009/0.010, N(Fo2) ≥ 3σ(Fo2) = 34 and N(var.) = 4. Both compounds crystallize in the completely ordered CsCl-type with neglible deviations from the ideal 1:1-composition. 相似文献
15.
Preparation and Crystal Structure of CsTe4 CsTe4 results from a melting reaction at 570°C in sealed quartztubes. The starting materials Cs and Te in the molar ratio 1:4 are produced in a first step by controlled decomposition of the CsN3 from mixtures of CsN3 and Te (1:4) at 350°C. CsTe4 is monoclinic, space group P21/c, with a = 7.857(1) Å, b = 7.286(1) Å, c = 14.155(2) Å, β = 93.83(1)°, and Z = 4. The tellurium atoms form a two-dimensional puckered layer built of from pseudo-trigonal-bipyramidal, T-shaped units Te4?. The central tellurium atom of this unit may be considered as a pseudo iodine. The compound is compared with other tellurides MTen having some like that unexpected principles of connection. 相似文献
16.
Preparation and Crystal Structure of KSbS2 Red KSbS2 was prepared in a aqueous solution of KHS and Sb2S3 under mild hydrothermal conditions. For crystallographic data see ?Inhaltsübersicht”?. There are SbS-chains, built up by ψ-trigonal bipyramids, which are connected by sharing edges. The K+-Ions between these chains have a nearly octaedric coordination. 相似文献
17.
Synthesis and Crystal Structure of CaBiVO5 Single crystals of the hitherto unknown compound CaBiVO5 were prepared and investigated by X-ray work. It crystallizes with orthorhombic symmetry, space group D? Pbca, a = 11.2022, b = 5.4283, c = 15.5605 Å, Z = 8. The crystal structure is characterized by layers of the edge-linked CaO7 polyhedra, isolated VO4 tetrahedra and an asymmetric surrounding of Bi3+ by oxygen. 相似文献
18.
Synthesis and Crystal Structure of Cs8P8O24 · 8H2O Cs8P8O24 · 8H2O was obtained from Na8P8O24 · 6H2O by cation exchange. Crystal growth was achieved by applying gel techniques (agar agar). The crystal structure (P1 ; a = 766.6(8); b = 1 156.9(9); c = 1 163.4(9) pm; α = 100,2(1)°; β = 106.5(2)°; γ = 92.2(1)°; Z = 1; 4 099 unique diffractometer data; R = 0.051; R(w) = 0.037) contains cyclo-octaphosphate anions with point symmetry C2h. The cesium atoms are coordinated irregularily by eight and ten oxygen atoms, respectively. The threedimensional linkage of the P8O248?-rings is established via bonds to cesium atoms and hydrogen bonds Provided by H2O molecules. 相似文献
19.
Preparation and Crystal Structure of Rb2Ni3Se4 The compound Rb2Ni3Se4 was synthesized by heating a mixture of rubidium carbonate, nickel and selenium at 850°C in an atmosphere of hydrogen. The compound has a golden lustre and crystallizes with the K2Pd3S4-type structure; a = 10.555(3) Å, b = 27.588(6) Å, c = 6.031(6) Å, Z = 8, Fddd (No. 70). The structure can be described as a stacking of layers of the composition Rb2Ni3Se4 with a stacking sequence abcd. The electrostatic part of lattice energy (MAPLE) will be discussed for compounds of the compositions A2M3X4 (A K, Rb, Cs; M Ni, Pd, Pt and X S, Se). 相似文献
20.
Preparation and Crystal Structure of LnAl3Br12 (Ln = La, Ce, Pr, Nd, Sm, Gd) and Thermal Decomposition to LnBr3 LnAl3Br12 (Ln = La, Ce, Pr, Nd, Sm, Gd) was prepared in crystalline form for the first time. The crystal structures of LaAl3Br12, PrAl3Br12, and NdAl3Br12 were determined on single crystals by X-ray methods. The isotypic compounds crystallize with trigonal symmetry, space group P 3112, Z = 3. A structural comparison to lanthanoide chloroaluminates of equal composition is given and thermal decomposition of LnAl3Br12 (Ln = Nd) to the corresponding lanthanoide tribromide is described. 相似文献