首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of transition-metal complexes as homogeneous catalysts for the production of organic chemicals is of considerable industrial significance. Although palladium complexes have not attained the same importance as, for example, those of rhodium or cobalt, palladium is nonetheless one of the most versatile metals for synthetic organic purposes. An understanding of the role played by the metal in these reactions is essential for their optimal utilization. This necessarily entails a detailed study of the chemistry of the palladium-carbon bond. In this article we concentrate on η3-allylpalladium complexes, which are frequently involved as intermediates in the Pd-catalyzed transformations of dienes. The study of their behavior gives a deeper insight into the individual steps of a catalytic cycle.  相似文献   

2.
3.
A μ3‐η222‐silane complex, [(Cp*Ru)33‐η222‐H3SitBu)(μ‐H)3] ( 2 a ; Cp*=η5‐C5Me5), was synthesized from the reaction of [{Cp*Ru(μ‐H)}33‐H)2] ( 1 ) with tBuSiH3. Complex 2 a is the first example of a silane ligand adopting a μ3‐η222 coordination mode. This unprecedented coordination mode was established by NMR and IR spectroscopy as well as X‐ray diffraction analysis and supported by a density functional study. Variable‐temperature NMR analysis implied that 2 a equilibrates with a tautomeric μ3‐silyl complex ( 3 a ). Although 3 a was not isolated, the corresponding μ3‐silyl complex, [(Cp*Ru)33‐η22‐H2SiPh)(H)(μ‐H)3] ( 3 b ), was obtained from the reaction of 1 with PhSiH3. Treatment of 2 a with PhSiH3 resulted in a silane exchange reaction, leading to the formation of 3 b accompanied by the elimination of tBuSiH3. This result indicates that the μ3‐silane complex can be regarded as an “arrested” intermediate for the oxidative addition/reductive elimination of a primary silane to a trinuclear site.  相似文献   

4.
5.
6.
7.
8.
9.
10.
The treatment of a β3‐amino acid methyl ester with 2.2 equiv. of lithium diisopropylamide (LDA), followed by reaction with 5 equiv. of N‐fluorobenzenesulfonimide (NFSI) at ?78° for 2.5 h and then 2 h at 0°, gives syn‐fluorination with high diastereoisomeric excess (de). The de and yield in these reactions are somewhat influenced by both the size of the amino acid side chain and the nature of the amine protecting group. In particular, fluorination of N‐Boc‐protected β3‐homophenylalanine, β3‐homoleucine, β3‐homovaline, and β3‐homoalanine methyl esters, 5 and 9 – 11 , respectively, all proceeded with high de (>86% of the syn‐isomer). However, fluorination of N‐Boc‐protected β3‐homophenylglycine methyl ester ( 16 ) occurred with a significantly reduced de. The use of a Cbz or Bz amine‐protecting group (see 3 and 15 ) did not improve the de of fluorination. However, an N‐Ac protecting group (see 17 ) gave a reduced de of 26%. Thus, a large N‐protecting group should be employed in order to maximize selectivity for the syn‐isomer in these fluorination reactions.  相似文献   

11.
The reactivity of two paramagnetic nickel(I) compounds, CpNi(NHC) (where Cp=cyclopentadienyl; NHC=1,3‐bis(2,4,6‐trimethylphenyl)imidazol‐2‐ylidene (IMes) or 1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene (IPr)), towards [Na(dioxane)x][PnCO] (Pn=P, As) is described. These reactions afford symmetric bimetallic compounds (μ222‐Pn2){Ni(NHC)(CO)}2. Several novel intermediates en route to such species are identified and characterised, including a compound containing the PCO? anion in an unprecedented μ222‐binding mode. Ultimately, on treatment of the (μ222‐Pn2){Ni(IMes)(CO)}2 compounds with carbon monoxide, the Pn2 units can be released, affording P4 in the case of the phosphorus‐containing species, and elemental arsenic in the case of (μ222‐As2){Ni(IMes)(CO)}2.  相似文献   

12.
13.
14.
15.
16.
17.
18.
We report a Ni‐catalyzed regioselective α‐carbonylalkylarylation of vinylarenes with α‐halocarbonyl compounds and arylzinc reagents. The reaction works with primary, secondary, and tertiary α‐halocarbonyl molecules, and electronically varied arylzinc reagents. The reaction generates γ,γ‐diarylcarbonyl derivatives with α‐secondary, tertiary, and quaternary carbon centers. The products can be readily converted to aryltetralones, including a precursor to Zoloft, an antidepressant drug.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号