首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
On the Biosynthesis of γ-Dodecanolactone in Ripening Fruits: Flavor Constituents from Strawberries (Fragaria ananassa) and Peaches (Prunus persica) Administration of deuterium-labelled 9,10-expoxy[8,8-2H2]heptadecanoic acid 8a / b and 9,10-dihydroxy-[8,8-2H2]methylheptadecanoate 9 as lower analogues of oleic acid 1 to ripening fruits of strawberries (Fragaria ananassa) and peaches (Prunus persica) results in the emission of labelled γ-undecanolactone ( 5 ) as the lower analog of γ-dodecanolactone ( 2 ). The transformation proceeds with loss of a single D-atom from C(8) of the precursors. Early precursors, like the C17-epoxy-acids 8a / b yield (4R)-γ-undecanolactone ( 5 ) of high enantiomeric purity, while later intermediates results in (4R)-γ-undecanolactone ( 5 ) of low purity. The data support a biosynthetic sequence involving the consecutive action of an epoxide hydrolase and β-oxidation to generate the correct chain length of the lactone percursor. The final steps proceed via cyclization of the 3,4-dihydroxyundecanoic acid 13 to the 3-hydroxy-γ-undecanolactone 14 . Elimination of H2O and reduction of the intermediate γ-undec-2-enolactone 15 terminate the biosynthesis of 5 . The sequence is representative for the biosynthesis of naturally occurring γ-dodecanolactone ( 2 ).  相似文献   

2.
Ab initio MODPOT /VRDDO calculations have been carried out on carcinogenic benzo(a)pyrene and its metabolites. The MODPOT /VRDDO method incorporates two very desirable options into our fast ab initio Gaussian programs: MODPOT —ab initio effective core model potentials—and a charge-conserving integral prescreening approximation which we named VRDDO (variable retention of diatomic differential overlap). For orbital energies and population analyses the MODPOT /VRDDO results agree to essentially three decimal places with completely ab initio calculations using the same valence atomic basis set. For this series of very closely related congeners a new MERGE technique was implemented that allows reuse of integrals of a common skeletal fragment. Since our program computes integrals efficiently by blocks, reusing information common to the block, it was more difficult to implement a MERGE technique than for integral programs which calculate the integrals one-byone. The MODPOT /VRDDO calculations were performed for benzo(a)pyrene (BP), BP oxides, BP dihydrodiols, and BP dihydrodiol epoxides. The metabolites investigated were BP-7,8-oxide, BP-4,5-oxide, BP-7,8-dihydrodiol [cis(e, a), cis(a, e), trans(e, e), and trans(a, a)], and BP-7,8-dihydrodiol-9,10-epoxide [β,β,β (the most stable), β,β,α; α,α,β, and α,α,α all derived from cis-BP-7,8-dihydrodiol and β,α,β; α,β,β and α,β,β derived from trans-BP-7,8-dihydrodiol]. Several different conformations were calculated for each of the BP dihydrodiols and BP dihydrodiol epoxides. Calculations were carried out for the opening of the C9—O—C10 epoxide ring both toward C9 and C10 for the, most stable β,β,β isomer of BP-7,8-dihydrodiol-9,10-epoxide. Opening the epoxide ring between C10 and O leads to a more stable intermediate than opening the epoxide ring between C9 and C10. However, there is no buildup of positive charge in C10 as has been postulated by some cancer researchers, but rather the C10 becomes slightly more negative. Nor is there a buildup of negative charge on the O atom. rather it becomes slightly less negative. As the epoxide ring is opened further than 90° for the O—C9—C10 or O—C10—C9 angles, there appears to be a possible mixing of configurations that is being investigated further.  相似文献   

3.
Phthalocyaninates and Tetraphenylporphyrinates of High Co‐ordinated ZrIV/HfIV with Hydroxo, Chloro, (Di)Phenolato, (Hydrogen)Carbonato, and (Amino)Carboxylato Ligands Crystals of tetra(n‐butyl)ammonium cis‐tri(phenolato)phthalocyaninato(2‐)zirconate(IV) ( 2 ) and ‐hafnate(IV) ( 1 ), di(tetra(n‐butyl)ammonium) cis‐di(tetrachlorocatecholato(O, O')phthalocyaninato(2‐)zirconate(IV) ( 3 ), and cis‐(di(μ‐alaninato(O, O')di(μ‐hydroxo))di(phthalocyaninato(2‐)zirconium(IV)) ( 12 ) have been isolated from tetra(n‐butyl)ammonium hydroxide solutions of cis‐di(chloro)phthalocyaninato(2‐)zirconium(IV) and ‐hafnium(IV), respectively, and the corresponding acid in polar organic solvents. Similarly, with cis‐di(chloro)tetraphenylporphyrinato(2‐)zirconium(IV), cis[Zr(Cl)2tpp] as precursor crystalline tetra(n‐butyl)ammoniumcis‐tetrachlorocatecholato(O, O')hydrogentetrachlorocatecholato(O)tetraphenylporphyrinato(2‐)zirconate(IV) ( 4 ), cis‐hydrogencarbonato(O, O')phenolatotetraphenylporphyrinato(2‐)zirconium(IV) ( 6 ), cis‐di(benzoato(O, O'))tetraphenylporphyrinato(2‐)zirconium(IV) ( 11 ), and cis‐tetra(μ‐hydroxo)di(tetraphenylporphyrinato(2‐)zirconium(IV)) ( 13 ) with a cis‐arrangement of the symmetry equivalent μ‐hydroxo ligands, and from di(acetato)tetraphenylporphyrinato(2‐)zirconium(IV) the corresponding trans‐isomer ( 14 ) have been prepared. The endothermic dehydration at 215 °C of 13/14 yields μ‐oxodi(μ‐hydroxo)di(tetraphenylporphyrinato(2‐)zirconium(IV)) ( 15 ). 15 also precipitates on dilution of a solution of cis[Zr(X)2tpp] (X = Cl, OAc) in dmf/(nBu4N)OH with water, while on prolonged standing of this solution on air tri(tetra(n‐butyl)ammonium) cis‐(nido〈di(carbonato(O, O'))undecaaquamethoxide〉tetraphenylporphyrinato(2‐)zirconate(IV) ( 7 ) crystallizes, in which ZrIV coordinates a supramolecular nestlike nido〈(O2CO)2(H2O)11OCH35— cluster anion stabilised by hydrogen bonding in a nanocage of surrounding (nBu4N)+ cations. On the other hand, cis[Zr(Cl)2pc] forms with (Et4N)2CO3 in dichloromethane di(tetraethylammonium) cis‐di(carbonato(O, O')phthalocyaninato(2‐)zirconate(IV) ( 5 ). cis[Zr(Cl)2tpp] dissolves in various O‐donor solvents, from which cis‐di(chloro)dimethylformamidetetraphenylporphyrinato(2‐)zirconium(IV) ( 8 ), cis‐di(chloro)dimethylsulfoxidetetraphenylporphyrinato(2‐)zirconium(IV) ( 9 ), and a 1:1 mixture ( 10 ) of cis‐di(chloro)dimethylsulfoxidetetraphenylporphyrinato(2‐)zirconium(IV) ( 10a ) and cis‐chlorodi(dimethylsulfoxide)tetraphenylporphyrinato(2‐)zirconium(IV) chloride ( 10b ) crystallize. All complexes contain solvate molecules in the solid state, except 3 . ZrIV/HfIV is directed by ∼1Å out of the plane of the tetrapyrrolic ligand (pc, tpp) towards the mutually cis‐coordinated axial ligands. In the more concavely distorted phthalocyaninates, ZrIV is mainly eight‐coordinated and in the tetraphenylporphyrinates seven‐coordinated. The octa‐coordinated Zr atom is in a distorted quadratic antiprism, and the hepta‐coordinated one is in a square‐base‐trigonal‐cap cooordination polyhedron. In most tpp complexes, the Zr atom is displaced by up to 0.3Å out of the centre of the coordination polyhedron towards the tetrapyrrolic ligand. In 13/14 , both antiprisms are face shared by an O4 plane, and in 12 they are shared by an O2 edge and the O atoms of the bridging aminocarboxylates, the dihedral angle between the O4 planes of both antiprisms being 50.1(1)°. The mean Zr‐Np distance is 0.05Å longer in the pc complexes than in the tpp complexes (d(Zr‐Np)pc = 2.31Å). In the monophenolato complexes, the mean Zr‐O distance (∼2.00Å) is shorter than in the complexes with other O‐donor ligands (d(Zr‐O)pc = 2.18Å; d(Zr‐O)tpp = 2.21Å); the Zr‐Cl distances vary between 2.473(1) and 2.559(2)Å (d(Zr‐Cl)tpp = 2.51Å). d(C‐Oexo) = 1.494(4)Å in the bidentate hydrogencarbonato ligand in 6 is 0.26Å longer than in the bidentate carbonato ligands in 5 and 7 . 9 and 10a are rotamers slightly differing by the orientation of the axial ligands with respect to the tpp ligand. In 1—4, 6 , and 11 the phenolato, catecholato, and benzoato ligands, respectively, are in syn‐ and/or anti‐conformations with respect to the plane of the macrocycle. π‐Dimers with modest overlap of the neighbouring macrocyclic rings are observed in 5, 6, 8, 9, 10b, 12 , and 14 . The common UV/Vis spectroscopical and vibrational properties of the new phthalocyaninates and tetraphenylporphyrinates scarcely reflect their rich structural diversity.  相似文献   

4.
Structure of the Intermediate of a Methylation with (i-PrO)2TiMe2: NMR Investigations and Conformational Analysis The intermediate of the reaction of 3-(1-nitro-2-oxocyclohexyl)propanal ((±)- 1 ) with (i-PrO)2TiMe2 was shown to be a titanium salt of 6-(hydroxynitroryl)decano-9-lactone. 1H-, 13C-, HSQC-, 1H,1H-TOCSY- and long-range HMBC-NMR spectra of this intermediate indicate a complexation of the carbonyl O-atom and an O-atom of the hydroxynitroryl group to the same Ti-atom. The product of the reaction (t-3-methyl-c-6-nitro-2-oxabicyclo[4.4.0]decan-r-1-ol, (±)- 2 ) was reacted with several titanium reagents to give also titanium salts of the 6-(hydroxynitroryl)decano-9-lactone. Monte Carlo studies and MM3* force-field calculations of the anion of 6-(hydroxynitroryl)decano-9-lactone, 3′ , resulted in a conformation of the ten-membered ring (only 9.57 kJ/mol higher in energy than the global minimum), which allows the Ti-atom to coordinate to the O-atom of the N(O)OH and C?O group at the same time. With the suggested structure of 3′ · TiRn, we are able to explain the selectivity of the reaction.  相似文献   

5.
(all-Z)-(9,10,12,13,15,16-2H6)Octadeca-9,12,15-trienoic acid ( = α-linolenic acid; D6- 4 ) was synthesized to investigate the biochemical formation of linolenic-acid-derived aroma compounds in cultures of the yeast Sporobolomyces odorus, using an established gas chromatographic/mass spectrometric (GC/MS) method. Three compounds were identified as labeled: (Z)-dec-7-eno-5-lactone (δ-jasmin lactone), (Z,Z)-dodeca-6,9-dieno-4-lactone, and (2E,4Z)-hepta-2,4-dienoic acid. Both lactones were biosynthesized mostly under conservation of the initial configuration from their corresponding oxygenated linolenic-acid intermediates. The application of (13S,9Z,11E,15Z)-13-hydroxy(9,10,12,13,15, 16-2H6)octadeca-9,11,15-trienoic acid (D6- 7 ) as a OH-functionalized precursor of δ-jasmin lactone allowed to gain insight into the stereochemical course of the biosynthesis to both enantiomers of this lactone. In this experiment, 88.3% of the metabolized labeled precursor was transformed under retention of the original configuration of the (R)-enantiomer. This investigation is also a contribution to a better understanding of the C?C bond isomerization steps which took place during the β-oxidative degradation of the substrate.  相似文献   

6.
Iron-catalyzed highly regio- and enantioselective organic transformations with generality and broad substrate scope have profound applications in modern synthetic chemistry; an example is herein described based on cis-FeII complexes having metal- and ligand-centered chirality. The cis-β FeII(N4) complex [FeII(L)(OTf)2] (L = N,N′-bis(2,3-dihydro-1H-cyclopenta-[b]quinoline-5-yl)-N,N′-dimethylcyclohexane-1,2-diamine) is an effective chiral catalyst for highly regio- and enantioselective alkylation of N-heteroaromatics with α,β-unsaturated 2-acyl imidazoles, including asymmetric N1, C2, C3 alkylations of a broad range of indoles (34 examples) and alkylation of pyrroles and anilines (14 examples), all with high product yields (up to 98%), high enantioselectivity (up to >99% ee) and high regioselectivity. DFT calculations revealed that the “chiral-at-metal” cis-β configuration of the iron complex and a secondary π–π interaction are responsible for the high enantioselectivity.

A cis-β FeII complex having metal- and ligand-centered chirality catalyzes highly regio- and enantioselective alkylation of indoles (at the N1, C2, or C3 position), pyrroles and anilines with α,β-unsaturated 2-acyl imidazoles (48 examples, up to 99% ee).  相似文献   

7.
The complex [Ni(L-H)2] · CHCl3 (I), where L-H is the (9E)-phenanthrene-9,10-dione[(1Z)-3,3-dimethyl-3,4-dihydroisoquinolin-1(2H)-ylidene]hydrazone anion (L), was synthesized for the first time. The crystal structure of I was solved. The L-H and L-H′ anions exist as cis- and trans-isomers and are linked to the central Ni2+ atom in a tridentate chelating mode giving rise to two conjugated five-membered metal rings of different composition (NiN3C and NiONC2) at each anion. The Ni2+ coordination polyhedron is a highly distorted octahedron whose axial positions are occupied by N(3) and N(3)′ atoms. The vertices of the tetrahedrally distorted equatorial base of the octahedron are occupied by the N(1) and N(1)′ atoms of the dihydroisoquinoline fragment (A) and the O(1) and O(1)′ atoms of the phenanthrenequinone fragment (B). Complex I occurs as the cis-isomer. The conformations of the L-H anions in I and the L molecules in L · H2O do not differ much. The randomly disordered CHCl3 solvent molecules in I occupy crystal voids between the centrosymmetric dimeric associates. Spectroscopic (IR and UV-Vis) characteristics of I were obtained.  相似文献   

8.
The title compound [systematic name: 9,10‐di­methoxy‐2,3‐methyl­ene­dioxy‐5,6‐di­hydro­dibenzo­[a,g]­quinolizinium form­ate–succinic acid (1/1)], C20H18NO4+·CHO2·C4H6O4, con­tains centrosymmetric pairs of almost planar berberine cations, and hydrogen‐bonded (C4H6O4⋯HCOO)2 rings of succinic acid with formate anions, bonded by O—H⋯O hydrogen bonds with O⋯O distances of 2.4886 (15) and 2.5652 (16) Å. Pairs of cations and mol­ecules of succinic acid are connected by non‐conventional weak C—H⋯O hydrogen bonds, with C⋯O distances of 3.082 (2) and 3.178 (2) Å.  相似文献   

9.
9,10‐(Bpin)2‐anthracene ( 3 , HBpin=pinacolborane) was synthesized from 9,10‐dibromoanthracene in a stepwise lithiation/borylation sequence. The reaction of 3 with highly activated magnesium furnished the diborylated magnesium anthracene 4 , which was quenched in situ with ethereal HCl to yield cis‐9,10‐(Bpin)2‐DHA (cis‐ 5 , DHA=9,10‐dihydroanthracene). Compound cis‐ 5 , in turn, can be reduced with Li[AlH4] in THF to give its diborate Li2[cis‐9,10‐(BH3)2‐DHA] (Li2[cis‐ 6 ]). In the crystal lattice, the THF solvate Li2[cis‐ 6 ] ? 3 THF establishes a dimeric structure with Li‐(μ‐H)‐B coordination modes. Hydride abstraction from Li2[cis‐ 6 ] with Me3SiCl yields the B?H?B‐bridged DHA Li[ 7 ]. This product can also be viewed as a unique cyclic B2H7? derivative with a hydrocarbon backbone. Treatment of Li2[cis‐ 6 ] with the stronger hydride abstracting agent Me3SiOTf (HOTf=trifluoromethanesulfonic acid) in THF affords the THF diadduct of cis‐9,10‐(BH(OTf))2‐DHA.  相似文献   

10.
The reaction of cis-[Pt(15NH3)2(H2O) 2] 2+ (3) with N-acetylcysteine [H3accys] was investigated in aqueous solution. In this reaction, the ammine in the platinum complex formed was liberated. A mono-dentate sulfur-boundplatinum(II) product cis-[Pt(15NH3)2(H2O)(H2accys-S)]+ (7) and six-membered che-late ring complex cis-[Pt(15NH3)2 (Haccys-S,O)] (8) were formed in solution. The dinuclear sulfur-bridged complex 9, giving a broad peak in 15N NMR, was also observed, but only present in very tiny amounts. The mass spectrometry (ES-MS) was undertaken from this re action, and the product detected was only the dinuclear sulfur bridged platinum species and species related to it by ammine loss.  相似文献   

11.
The synthesis of quinic acid ( 4 ) via epoxide 13 , starting from shikimic acid ( 5 ), is described (Scheme 1). Treatment of 13 with thiophenol yielded not only 17 , but also the γ-lactones 18 and 19 as result of migration of silyl groups within a cis- and trans-diol system. The conversion provides a direct stereoselective epoxidation of a shikimic-acid derivative as well as an alternative pathway for the preparation of 4 . A shorter approach via the disilylated epoxide 22 was unsuccessful because the γ-lactone 25 was obtained in place of the desired α-hydroxy ester 24 (Scheme 2).  相似文献   

12.
Breakdown graphs have been constructed from charge exchange data for the epimeric 2-methyl-, 3-methyl- and 4-methyl-cyclohexanols. Although the breakdown graphs for epimeric pairs are essentially identical above ~12 eV recombination energy, significant differences are observed for the epimeric 2-methyl- and 4-methyl-cyclohexanols at low internal energies. For the 2-methylcyclohexanols the ratio ([M? H2O]/[M])cis/([M? H2O]/[M])trans is 3.2 in the [C6F6] charge exchange mass spectra. This is attributed to both energetic and conformational effects which favour the stereospecific cis-1,4-H2O elimination for the cis epimer. The breakdown graph for trans-4-methylcyclohexanol shows a sharp peak in the abundance of the [M? H2O] ion at ~10 eV recombination energy which is absent from the breakdown graph for the cis epimer. This peak is attributed to the stereospecific cis-1,4-elimination of water from the molecular ion of the trans isomer; the reaction appears to have a low critical energy but a very unfavourable frequency factor, and alternative modes of water loss common to both epimers are observed at higher energies. As a result, in the [C6F6] charge exchange mass spectra the ([M? H2O]/[M])trans/([M? H2O]/[M])cis ratio is ~24, compared to the value of 13 observed in the 70 eV EI mass spectra. No differences are observed in either the metastable ion abundances or the associated kinetic energy releases for epimeric molecules.  相似文献   

13.
Syntheses and Properties of cis -Diacidophthalocyaninato(2–)thallates(III); Crystal Structure of Tetra(n-butyl)ammonium cis -dinitrito(O,O ′)- and cis -dichlorophthalocyaninato(2–)thallate(III) Blue green cis-diacidophthalocyaninato(2–)thallate(III), cis[Tl(X)2pc2–] (X = Cl, ONO′, NCO) is prepared from iodophthalocyaninato(2–)thallium(III) and the corresponding tetra(n-butyl)ammonium salt, (nBu4N)X in dichloromethane, and isolated as (nBu4N)cis[Tl(X)2pc2–]. (nBu4N)cis[Tl(ONO′)2pc2–] ( 1 ) and (nBu4N)cis[Tl(X)2pc2–] · 0,5 (C2H5)2O ( 2 ) crystallize in the monoclinic space group P21/n with cell parameters for 1: a = 14.496(2) Å, b = 17.293(5) Å, c = 18.293(2) Å, β = 98.76(1)° resp. for 2 : a = 13.146(1) Å, b = 14.204(5) Å, c = 24.900(3) Å, β = 93.88(1)°; Z = 4. In 1 , the octa-coordinated Tl atom is surrounded by four isoindole-N atoms (Niso) and four O atoms of the bidental nitrito(O,O′) ligands in a distorted antiprism. The Tl–Niso distances vary between 2.257(3) and 2.312(3) Å, the Tl–O distances between 2.408(3) and 2.562(3) Å. In 2 , the hexa-coordinated Tl atom ligates four Niso atoms and two Cl atoms in a typical cis-arrangement. The average Tl–Niso distance is 2.276 Å, the average Tl–Cl distance is 2.550 Å. In 1 and 2 , the Tl atom is directed out of the centre of the (Niso)4 plane (CtN) towards the acido ligands (d(Tl–CtN) = 1.144(1) Å in 1 , 1.116(2) Å in 2 ), and the phthalocyaninato ligand is concavely distorted. The vertical displacements of the periphereal C atoms amounts up to 0.82 Å. The optical and vibrational spectra as well as the electrochemical properties are discussed.  相似文献   

14.
The development of environmentally benign catalysts for highly enantioselective asymmetric cis‐dihydroxylation (AD) of alkenes with broad substrate scope remains a challenge. By employing [FeII(L)(OTf)2] (L=N,N′‐dimethyl‐N,N′‐bis(2‐methyl‐8‐quinolyl)‐cyclohexane‐1,2‐diamine) as a catalyst, cis‐diols in up to 99.8 % ee with 85 % isolated yield have been achieved in AD of alkenes with H2O2 as an oxidant and alkenes in a limiting amount. This “[FeII(L)(OTf)2]+H2O2” method is applicable to both (E)‐alkenes and terminal alkenes (24 examples >80 % ee, up to 1 g scale). Mechanistic studies, including 18O‐labeling, UV/Vis, EPR, ESI‐MS analyses, and DFT calculations lend evidence for the involvement of chiral FeIII‐OOH active species in enantioselective formation of the two C?O bonds.  相似文献   

15.
Two supramolecular crown ether complexes [Na(DC18C6-A)(H2O)]{[Na(DC18C6-A)][Cd(mnt)2]} (1) and [K(DC18C6-A)]2[Cd(mnt)2] (2) (DC18C6-A = cis-syn-cis-dicyclohexyl-18-crown-6, isomer A; mnt = maleonitriledithiolate) have been synthesized and characterized by elemental analysis, FT-IR spectroscopy and X-ray single crystal diffraction. Complex 1 is composed of one [Na(DC18C6-A)(H2O)]+ complex cation and one {[Na(DC18C6-A)][Cd(mnt)2]}complex anion and displays an infinite chain-like structure through N–Na–N interactions. In complex 2, [K(DC18C6-A)]+ complex cation and [Cd(mnt)2]2− complex anion afford a novel 1D ladder-like structure by N–K–N, N–K–S interactions.  相似文献   

16.
trans-11,12-Epoxy-(6Z,9Z)-6,9-henicosadiene (posticlure) has been identified from a pheromone gland of the lymantriid species, Orgyia postica. Since the diversity of Lepidoptera suggests that some species utilize the structure-related epoxy compound as a sex pheromone component, epoxydienes and epoxytrienes derived from (6Z,9Z,11E)-6,9,11-trienes and (3Z,6Z,9Z,11E)-3,6,9,11-tetraenes with a C19–C21 chain were systematically synthesized and the chemical data were accumulated in order to contribute to a new pheromone research. Peracid oxidation of each triene and each tetraene produced, respectively, a mixture of three epoxydienes (cis-6,7-epoxy-9,11-diene; cis-9,10-epoxy-6,11-diene; and trans-11,12-epoxy-6,9-diene) and four epoxytrienes (cis-3,4-epoxy-6,9,11-triene; cis-6,7-epoxy-3,9,11-triene; cis-9,10-epoxy-3,6,11-triene; and trans-11,12-epoxy-3,6,9-triene). While the 9,10-epoxy compounds were unstable and, interestingly, converted into 9-ketone derivatives after chromatography over SiO2, each positional isomer was isolated by HPLC equipped with an ODS column, and the chemical structure was determined by NMR analysis. On the GC-MS analysis with a DB-23 column, the positional isomers were also eluted separately and characteristic mass spectra were proposed. By comparing the spectral data of the epoxy compounds with a different carbon chain, diagnostic fragment ions reflecting the chemical structure were determined as follows: m/z 79, 109, 113, and M-114 for the 6,7-epoxydienes; m/z 69, 97, 111, 139, and M-111 for the 9,10-epoxydienes; m/z 57, 79, 109, 136, M-151, and M-111 for the 11,12-epoxydienes; m/z 79, 91, 105, and 119 for the 3,4-epoxytrienes; m/z 79, 124, M-124, M-96, and M-69 for the 6,7-epoxytrienes; m/z 79, 95, 109, 137, and M-108 for the 9,10-epoxytrienes; and m/z 79, 134, M-149, M-109, and M-95 for the 11,12-epoxytrienes.  相似文献   

17.
Polymerization of p-(dimethylsilyl)phenylacetylene in toluene at 25 and 80 °C with RhI(PPh3)3 catalyst afforded highly regio- and stereoregular poly(dimethylsilylene-1,4-phenylenevinylene)s [cis- and trans-poly( 1a )s] containing 98% cis- and 99% trans-vinylene moieties, respectively. The trans-type polymers exhibited redshifts and hyperchromic effects in the ultraviolet–visible spectrum as compared with the cis-type counterparts. Photoirradiation of cis- and trans-poly( 1a )s gave cis-rich mixtures at equilibrium states. The trans and cis polymers exhibited different emission properties, for example—trans polymer, emissn λmax = 400 nm, quantum yield: 3.4 × 10−3 and cis polymer, emissn λmax = 380 nm, quantum yield: 1.5 × 10−3. Besides poly( 1a ), poly(dimethylsilylenearylenevinylene)s containing biphenylene and phenylenesilylenephenylene units [poly( 3 )] were prepared. The extent of conjugation in these polymers decreased in the orders of biphenylene > phenylene > phenylenesilylenephenylene as well as trans-vinylene > cis-vinylene. The quantum yield of the trans-rich polymer with biphenylene moiety was fairly large and 0.15. Polyaddition of 1,4-bis(dimethylsilyl)benzene and three types of diethynylarenes (4,4′-diethynylbiphenyl, 2,7-diethynylfluorene, and 2,6-diethynylnaphthalene) catalyzed by RhI(PPh3)3 provided novel regio- and stereoregular polymers [poly( 6 )]. These polymers displayed blue light emission with high quantum yields (4–81%). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3615–3624, 2003  相似文献   

18.
A series of closely related dinuclear (head-head) PtII complexes of general composition cis-[a2PtL2Pta′2]2+ with a,a′ = NH3 or CH3NH2 and L = 1-methyluracilate-N3,O4 (1-MeU) or 1-methylthyminate-N3,O4 (1-MeT) has been prepared and the solution behavior toward CeIV oxidation studied. The X-ray crystal structure of a representative example cis-[(CH3NH2)2Pt(1-MeU)2Pt(CH3NH2)2](ClO4)2 · 0.5 H2O ( 1b ), has been determined: Monoclinic, space group P21/c, a = 11.907(7) Å, b = 19.087(14) Å, c = 12.525(7) Å, β = 90.49(4)°, Z = 4. Oxidation of these diplatinum(II) complexes ([Pt2.0]2) with CeIV in aqueous solution to the corresponding diplatinum(III) species ([Pt3.0]2) proceeds via tetranuclear [Pt2.25]4 or dinuclear [Pt2.5]2 mixed-valence state compounds, depending on the nature of the a′ ligands: with a′ = NH3, blue green [Pt2.25]4 forms, whereas with a′ = CH3NH2, purple [Pt2.5]2 represents the intermediate. This difference is interpreted in terms of differences in bulk between NH3 and CH3NH2 ligands trans to the O(4) positions of the bridging nucleobases which influence the ability of dinuclear species to associate via the O(4)2 Pt a2′ faces.  相似文献   

19.
In the present redetermination of the complex cis‐tetra­carbonyl­bis­(tri­cyclo­hexyl­phosphine)molybdenum(0), (I), [Mo(C18H33P)2(CO)4] or cis‐{η1‐[P(C6H11)3]2}Mo(CO)4, the Mo atom has a distorted octahedral geometry with a large P—Mo—P angle of 104.8 (1)°. A strong trans influence on the carbonyls in (I) is seen in a shortening of the Mo—C and a lengthening of the C—O distances opposite the phosphines compared with those that are cis. This influence is greatly diminished in the complex penta­carbonyl­(tri­cyclo­hexyl­phosphine)­molyb­denum(0), (II), [Mo(C18H33P)(CO)5] or {η1‐[P(C6H11)3]}­Mo(CO)5, the core of which has a slightly distorted C4v geometry.  相似文献   

20.
Synthesis of (±)-Diplodialide B and A Two steroid hydroxylase inhibitors, diplodialide B (1) and A (2) have been synthesized in the following way: The lithium enolate 5 of S-t-butyl thioacetate (4) was added to (E)-7-(2′-tetrahydropyranoxy)-2-octen-1-al (8) and the newly formed 3-hydroxy group in the product 9 was protected as t-butyl-diphenyl silyl ether followed by selective hydrolysis of the tetrahydropyranyl ether to give 10. Treatment with AgNO3/H2O cleaved the S-t-butyl ester group in 10 to give the corresponding hydroxy carboxylic acid which was converted into the S-2-pyridyl thioester by treatment with di(2-pyridyl)disulfide and triphenyl phosphine and cyclized with AgClO4 to give the (4E,3,9-trans)- and (4E,3,9-cis)-lactone 11 and 12 (R?t-Bu(C6H5)2Si) in 67% yield. Chromatographic separation of 11 and 12 and cleavage of the t-butyl-diphenyl silyl ether with tetrabutyl ammonium fluoride yielded (±)-diplodialide B (1) with (4E,3,9-trans)-configuration and the (4E,3,9-cis)-isomer 12 (R?H). Both isomers could be oxidized to diplodialide A (2) with manganese dioxide. The synthesis described above has also been carried out via the intermediates 10 , 11 and 12 with R?COOCH2CH2Si(CH3)3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号