首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Syntheses and Crystal Structures of new Selenido‐ and Selenolato‐bridged Copper Clusters: [Cu38Se13(SePh)12(dppb)6] (1), [Cu(dppp)2][Cu25Se4(SePh)18(dppp)2] (2), [Cu36Se5(SePh)26(dppa)4] (3), [Cu58Se16(SePh)24(dppa)6] (4), and [Cu3(SeMes)3(dppm)] (5) The reactions of copper(I) chloride or copper(I) acetate with monodentate phosphine ligands (PR3; R = organic group) and Se(SiMe3)2 have already lead to the formation of CuSe clusters with up to 146 copper and 73 selenium atoms. If the starting materials and the bidentate phosphine ligands (Ph2P–(CH2)n–PPh2, n = 1: dppm, n = 3: dppp, n = 4: dppb; Ph2P–C≡C–PPh2: dppa) and silylated chalcogen derivates are changed (RSeSiMe3; R = Ph, Mes) a series of new CuSe clusters can be synthesized. From single crystal X‐ray structure analysis one can characterise [Cu38Se13(SePh)12(dppb)6] ( 1 ), [Cu(dppp)2] · [Cu25Se4(SePh)18(dppp)2] ( 2 ), [Cu36Se5(SePh)26(dppa)4] ( 3 ), [Cu58Se16(SePh)24(dppa)6] ( 4 ) and [Cu3(SeMes)3(dppm)] ( 5 ). In this new class of CuSe clusters, compounds 1 and 4 possess a spherical cluster skeleton, wheras 2 and 3 have a layered cluster core.  相似文献   

5.
6.
Zincselenide- and Zinctellurideclusters with Phenylselenolate- and Phenyltellurolateligands. The Crystal Structures of [NEt4]2[Zn4Cl4(SePh)6], [NEt4]2[Zn8Cl4Se(SePh)12], [Zn8Se(SePh)14(PnPr3)2], [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr, Ph), and [Zn10Te4(TePh)12(PR3)2] (R = nPr, Ph) In the prescence of NEt4Cl ZnCl2 reacts with PhSeSiMe3 or a mixture of PhSeSiMe3/Se(SiMe3)2 to form the ionic complexes [NEt4]2[Zn4Cl4(SePh)6] 1 or [NEt4]2[Zn8Cl4Se(SePh)12] 2 respectively. The use of PnPr3 instead of the quarternary ammonia salt leads in toluene to the formation of crystalline [Zn8Se(SePh)14(PnPr3)2] 3 . Reactions of ZnCl2 with PhTeSiMe3 and tertiary phosphines result in acetone in crystallisation of the ionic clusters [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr 4 , Ph 5 ) and in THF of the uncharged [Zn10Te4(TePh)12(PR3)2] (R = nPr 6 , Ph 7 ). The structures of 1–7 were obtained by X-ray single crystal structure. ( 1 : space group P21/n (No. 14), Z = 4, a = 1212,4(2) pm, b = 3726,1(8) pm, c = 1379,4(3) pm β = 99,83(3)°; 2 space group P21/c (Nr. 14), Z = 4, a = 3848,6(8) pm, b = 1784,9(4) pm, c = 3432,0(7) pm, β = 97,78(3)°; 3 : space group Pnn2 (No. 34), Z = 2, a = 2027,8(4) pm, b = 2162,3(4) pm, c = 1668,5(3) pm; 4 : space group P21/c (No. 14), Z = 4, a = 1899,8(4) pm, b = 2227,0(5) pm, c = 2939,0(6) pm, β = 101,35(3)°; 5 : space group space group P21/n (No. 14), Z = 4, a = 2231,0(5) pm, b = 1919,9(4) pm, c = 3139,5(6) pm, β = 109,97(4)°; 6 : space group I41/a (No. 88), Z = 4, a = b = 2566,0(4) pm, c = 2130,1(4) pm; 7 : space group P1¯ (No. 2), Z = 2, a = 2068,4(4) pm, b = 2187,8(4) pm, c = 2351,5(5) pm, α = 70,36°, β = 84,62°, γ( = 63,63°)  相似文献   

7.
8.
9.
Syntheses and Crystal Structures of Chalcogenido‐bridged Nickel Cluster Compounds [Ni5Se4Cl2(PPhEt2)6], [Ni12Se12(PnPr3)6], and [Ni18S18(PiPr3)6] The reaction of (R)ESiMe3 (R = SiMe3, Mes = C9H11; E = S, Se) with [NiCl2(PPhEt2)2] and [NiCl2(PR3)2] (R = nPr, iPr) gives new chalcogenido‐bridged nickel cluster compounds [Ni5Se4Cl2(PPhEt2)6]·2THF ( 1 ), [Ni12Se12(PnPr3)6]·2THF ( 2 ), and [Ni18S18(PiPr3)6]·2THF ( 3 ). The structures of these compounds were determined by single crystal X‐ray structural analyses.  相似文献   

10.
Syntheses and Crystal Structures of [Cu4(As4Ph4)2(PRR′2)4], [Cu14(AsPh)6(SCN)2(PEt2Ph)8], [Cu14(AsPh)6Cl2(PRR′2)8], [Cu12(AsPh)6(PPh3)6], [Cu10(AsPh)4Cl2(PMe3)8], [Cu12(AsSiMe3)6(PRR′2)6], and [Cu8(AsSiMe3)4(PtBu3)4] (R, R′ = Organic Groups) Through the reaction of CuSCN with AsPh(SiMe3)2 in the presence of tertiary phosphines the compounds [Cu4(As4Ph4)2(PRR′2)4] ( 1 – 3 ) ( 1 : R = R′ = nPr, 2 : R = R′ = Et; 3 : R = Me, R′ = nPr) and [Cu14(AsPh)6(SCN)2(PEt2Ph)8] ( 4 ) can be synthesised. Using CuCl instead of CuSCN results to the cluster complexes [Cu14(AsPh)6Cl2(PRR′2)8] ( 5–6 ) ( 5 : R = R′ = Et; 6 : R = Me, R′ = nPr), [Cu12(AsPh)6(PPh3)6] ( 7 ) and [Cu10(AsPh)4Cl2(PMe3)8] ( 8 ). Through reactions of CuOAc with As(SiMe3)3 in the presence of tertiary phosphines the compounds [Cu12(AsSiMe3)6(PRR′2)6] ( 9 – 11 ) ( 9 : R = R′ = Et; 10 : R = Ph, R′ = Et; 11 : R = Et, R′ = Ph) and [Cu8(AsSiMe3)4(PtBu3)4] ( 12 ) can be obtained. In each case the products were characterised by single‐crystal‐X‐ray‐structure‐analyses. As the main structure element 1 – 3 each have two As4Ph42–‐chains as ligands. In contrast 4 – 12 contain discrete AsR2–ligands.  相似文献   

11.
Syntheses and Structures of [Cu20Ga10Cl4Se23(PEt2Ph)12] and [Cu14In6Se7(iPrSe)18] CuCl and GaCl3 react with Se(SiMe3)2 in thf solution to yield in the presence of PEt2Ph [Cu20Ga10Cl4Se23(PEt2Ph)12] ( 1 ). Reaction of CuCl, InCl3 and TMEDA with iPrSeSiMe3 in DME results in the crystallisation of [Cu14In6Se7(iPrSe)18] ( 2 ). The structures of 1 and 2 were determined by X‐ray single crystal structure analysis and display two new types of molecular clusters formed by the elements of group 11, 13, and 16. However, both cluster structures show no analogy to the structures of the related bulk phases.  相似文献   

12.
13.
Reaction of lithium phenylselenothiolate, generated in situ from the reductive cleavage of PhSe‐SiMe3 with alkyl lithium reagents and insertion of elemental sulfur, with triphenylphosphine solubilized CuCl affords the molecular cluster complex [Cu20Se43‐SePh)12(PPh3)6] ( 1 ). The analogous reaction with AgCl yields the extended structure [Ag(SePh)] ( 2 ) in which an infinite layer of AgI atoms is capped on either side by μ4‐SePh ligands. 1: space group P¯1, a = 17.9510(6), b = 18.1712(7), c = 31.4311(11) Å, a = 78.098(2), β = 82.905(2), γ = 70.012(2)°. 2: space group C2/c, a = 5.8762(6), b = 7.2989(7), c = 29.124(2) Å, β = 95.790(3)°.  相似文献   

14.
15.
Synthesis and Structures of the Selenolato-Bridged Mercury Clusters [Hg6(SePh)12(P t Bu3)2] and (HP t Bu3)2[Hg6(SePh)14] The reaction of HgCl2 with PtBu3 and PhSeSiMe3 yields [Hg6(SePh)12(PtBu3)2] ( 1 ) and (HPtBu3)2[Hg6(SePh)14] ( 2 ). X-ray structural analysis of the compounds shows them to have similar Hg–Se cages with distorted tetrahedral coordination around mercury. The cages are built up from edge- and vertex-sharing distorted tetrahedra.  相似文献   

16.
Syntheses and Crystal Structures of new Amido- und Imidobridged Cobalt Clusters: [Li(THF)2]3[Co32-NHMes)3Cl6] (1), [Li(DME)3]2[Co184-NPh)33-NPh)12Cl3] (2), [Li(DME)3]2[Co64-NPh)(μ2-NPh)6(PPh2Et)2] (3), and [Li(THF)4][Co83-NPh)62-NPh)3(PPh3)2] (4) The reactions of cobalt(II)-chloride with the lithium-amides LiNHMes and Li2NPh leads to an amido-bridged multinuclear complex [Li(THF)2]3[Co32-NHMes)3Cl6] ( 1 ) as well as to the imido-bridged cobalt cluster [Li(DME)3]2[Co184-NPh)33-NPh)12Cl3] ( 2 ). In the presence of tertiary phosphines two imido-bridged cobalt clusters [Li(DME)3]2[Co64-NPh)(μ2-NPh)6(PPh2Et)2] ( 3 ) and [Li(THF)4][Co83-NPh)62-NPh)3(PPh3)2] ( 4 ) result. The structures of 1 – 4 were characterized by X-ray single crystal structure analysis.  相似文献   

17.
18.
Synthesis and Crystal Structure of [Li(thf)4]2[Bi4I14(thf)2], [Li(thf)4]4[Bi5I19], and (Ph4P)4[Bi6I22] Solutions of BiI3 in THF or methanol react with MI (M = Li, Na) to form polynuclear iodo complexes of bismuth. The syntheses and results of X-ray structure analyses of compounds [Li(thf)4]2[Bi4I14(thf)2], [Li(thf)4]4[Bi5I19], [Na(thf)6]4[Bi6I22] and (Ph4P)4[Bi6I22] are described. The anions of these compounds consist of edge-sharing BiI6 and BiI5(thf) octahedra. The Bi atoms lie in a plane and are coordinated by bridging and terminal I atoms and by THF ligands in a distorted octahedral fashion. [Li(thf)4]2[Bi4I14(thf)2]: Space group P1 (No. 2), a = 1 159.9(6), b = 1 364.6(7), c = 1 426.5(7) pm, α = 114.05(3), β = 90.01(3), γ = 100.62(3)°. [Li(thf)4]4[Bi5I19]: Space group P21/n (No. 14), a = 1 653.0(9), b = 4 350(4), c = 1 836.3(13) pm, β = 114.70(4)°. [Na(thf)6]4[Bi6I22]: Space group P21/n (No. 14), a = 1 636.4(3), b = 2 926.7(7), c = 1 845.8(4) pm, β = 111.42(2)°. (Ph4P)4[Bi6I22]: Space group P1 (No. 2), a = 1 368.6(7), b = 1 508.1(9), c = 1 684.9(8) pm, α = 98.28(4), β = 95.13(4), γ = 109.48(4)°.  相似文献   

19.
20.
The synthesis, molecular structures, and magnetic and optical properties of [Mn(32)Se(14)(SePh)(36)(PnPr(3))(4)] and [Na(benzene-15-crown-5)(C(4)H(8)O)(2)](2)[Mn(8)Se(SePh)(16)] have been investigated which are the first examples of manganese chalcogenide cluster complexes, despite known manganese oxo compounds, which comprise more than four manganese atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号