首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New Tetrapnictidotitanates(IV): Na3M3[TiX4] with M ? Na/Sr, Na/Eu and X ? P, As The four novel tetrapnictidotitanates(IV) Na4Sr2TiP4, Na4Sr2TiAs4, Na4.3Eu1.7TiP4 and Na4.3Eu1.7TiAs4 were prepared from the binary pnictides NaX, M3X, M′X (X ? P, As and M′ ? Sr, Eu) and elementary titanium in tantalum ampoules. The air and moisture sensitive transition metal compounds form dark red hexagonal crystals. They are semiconductors with Eg = 1.8eV (Sr) and Eg = 1.3eV (Eu), respectively. The compounds are isotypic with Na6ZnO4 (space group P63mc (no. 186); hP22; Z = 2; Na4Sr2TiP4; a = 936.8(1) pm, c = 740.5(1) pm; Na4Sr2TiAs4: a = 958.2(1) pm, c = 757.1(1) pm; Na4.3Eu1.7TiP4: a = 929.9(2) pm, c = 732.0(2) pm; Na4.3Eu1.7TiAs4: a = 953.9(1) pm, c = 749.5(1) pm). Main structural units are polar oriented [TiP4]8? and [TiAs4]8? tetrahedral anions with d (Ti? P) = 240.2(3) pm and d (Ti? As) = 248.6(3) pm.  相似文献   

2.
On Thallium(I)-oxochloromolybdates: Synthesis and Crystal Structures of Tl[MoOCl4(NCCH3)], Tl[Mo2O2Cl7], and Tl2[Mo4O4Cl14] and the Structure of Tl2[MoCl6] Black crystals of Tl2[MoCl6] are formed in the reaction of TlCl with MoOCl3 in a sealed evacuated glass ampoule at 350 °C. The crystal structure analysis shows that Tl2[MoCl6] (cubic, Fm m, a = 986.35(7) pm) adopts the K2[PtCl6] structure with a Mo–Cl bond length of 236.6 pm. Tl[MoOCl4(NCCH3)] was obtained by the reaction of TlCl with MoOCl3 in acetonitrile in form of yellow, moisture sensitive crystals. The structure (orthorhombic, Cmcm, a = 746.0(1), b = 1463.8(3), c = 857.3(2) pm) is built of Tl+ cations and octahedral [MoOCl4(NCCH3)] anions in which the acetonitrile ligand is bound in trans position to the oxygen. The reaction of TlCl and MoOCl3 in dichloromethane yields Tl[Mo2O2Cl7] and Tl2[Mo4O4Cl14] as green moisture sensitive crystals. The structure of Tl[Mo2O2Cl7] (orthorhombic, Pmmn, a = 694.3(1), b = 951.9(2), c = 904.7(1) pm) consists of Tl+ cations and dinuclear [Mo2O2Cl7] anions, with two equidistant chlorine bridges of 248.2 and one longer chlorine bridge of 265.7 pm. The oxygen atoms are located in the trans positions of the longer chloro bridge. The structure of Tl2[Mo4O4Cl14] (triclinic, P1¯, a = 692.8(1), b = 919.6(1), c = 998.9(1) pm, α = 104.94(1)°, β = 90.31(1)°, γ = 108.14(1)°) is build of Tl+ cations and [Mo4O4Cl14]2– anions which form tetramers of distorted octahedral, edgesharing (MoOCl5) units with chlorine atoms in the bridging positions. The oxygen atoms are located in the trans positions of the longest chlorine bridges.  相似文献   

3.
Synthesis and Structure of Tetrafluoroaurates(III) MI[AuF4] with MI = Li, Rb Single crystal investigations on Rb[AuF4], light yellow, confirm the tetragonal unit cell (K[BrF4]-type) with a = 618.2(1) and c = 1191(1) pm, Z = 4, space group I 4/mcm-D (No. 140). Li[AuF4], light yellow too, crystallizes monoclinic with a = 485.32(7), b = 634.29(8), c = 1004.43(13) pm, β = 92.759(12), Z = 4; space group P 2/c-C (No. 13). The structure of Li[AuF4] is related to the Rb[AuF4]-type of structure.  相似文献   

4.
Synthesis, Structure, and Magnetic Properties of Compounds NaMIIZr2F11 (MII = Ti, V, Cu) and a Notice on NaPdZr2F11 By synthesizing NaTiZr2F11 in form of red single crystals, it was possible to obtain a complex fluoride with Ti2+ for the first time. It crystallizes like the analogous greenish blue vanadium compound isotypic to AgPdZr2F11 [1] monoclinic, spacegroup C2/m–C (No. 12) with a = 918.0/911.5 pm, b = 682.6/675.7 pm, c = 780.8/776.6 pm, β = 116.2/116.2º and Z = 2. Colourless NaCuZr2F11 however crystallizes as a result of the Jahn-Teller distortion of Cu2+ triclinic (space group P1 –C (No. 2), a = 552.7 pm, b = 568.2 pm, c = 768.0 pm, α = 111.0º, β = 97.4º, γ = 106.4º) and is – as expected – isotypic to NaAgZr2F11 [1].  相似文献   

5.
Synthesis, Properties, and Structure of the Amine Adducts of Lithium Tris[bis(trimethylsilyl)methyl]zincates . Bis[bis(trimethylsilyl)methyl]zinc and the aliphatic amine 1,3,5-trimethyl-1,3,5-triazinane (tmta) yield in n-pentane the 1:1 adduct, the tmta molecule bonds as an unidentate ligand to the zinc atom. Bis[bis(trimethylsilyl)methyl]zinc · tmta crystallizes in the triclinic space group P1 with {a = 897.7(3); b = 1 114.4(4); c = 1 627.6(6) pm; α = 90.52(1); β = 103.26(1); γ = 102.09(1)°; Z = 2}. The central C2ZnN moiety displays a nearly T-shaped configuration with a CZnC angle of 157° and Zn? C bond lengths of 199 pm. The Zn? N distances of 239 pm are remarkably long and resemble the loose coordination of this amine; a nearly complete dissociation of this complex is also observed in benzene. The addition of aliphatic amines such as tmta or tmeda to an equimolar etheral solution of lithium bis(trimethylsilyl)methanide and bis[bis(trimethylsilyl)methyl]zinc leads to the formation of the amine adducts of lithium tris[bis(trimethylsilyl)methyl]zincate. Lithium tris[bis(trimethylsilyl)methyl]zincate · tmeda · 2 Et2O crystallizes in the orthorhombic space group Pbca with {a = 1 920.2(4); b = 2 243.7(5); c = 2 390.9(5) pm; Z = 8}. In the solid state solvent separated ions are observed; the lithium cation is distorted tetrahedrally surrounded by the two nitrogen atoms of the tmeda ligand and the oxygen atoms of both the diethylether molecules. The zinc atom is trigonal planar coordinated; the long Zn? C bonds with a value of 209 pm can be attributed to the steric and electrostatic repulsion of the three carbanionic bis(trimethylsilyl)methyl substituents.  相似文献   

6.
Magnetic Properties of the Cobaltates Na6CoS4, Na6CoSe4, and K6CoS4 The alkali metal cobalt chalcogenides Na6CoS4, Na6CoSe4, and K6CoS4 crystallize in the space group P63mc with Z = 4. The structure is characterized by isolated [CoX4]-tetrahedra. The magnetic susceptibilities show Curie-Weiss behaviour. The deviations at low temperatures are caused by antiferromagnetic interactions. The magnetic moments are discussed with regard to ligand-field parameters.  相似文献   

7.
Syntheses and Crystal Structures of the Polyselenido Complexes (PPh4)6[M(Se4)2]2[WSe4] · DMF with M = Zinc and Mercury The title compounds have been prepared by the reactions of the acetates of zinc and mercury, respectively, with excess (PPh4)2 WSe4 in boiling dimethylformamide, forming black-red single crystals. According to the X-ray structure determinations both compounds crystallize isotypically in the space group 12/a with four formula units per unit cell. (PPh4)6[Zn(Se4)2]2[WSe4] · DMF: a = 2888.1(6), b = 1740.3(2), c = 2893.9(4) pm, β = 90.47(1)°. 3230 observed unique reflections, R = 0.009. (PPh4)6[Hg(Se4)2]2[WSe4] · DMF: a = 2891.8(5), b = 1738.0(4), c = 2920.1(5) pm, β = 90.29(2)°. 2978 observed unique reflections, R = 0.115%. The compounds consist of PPh4+ ions, spirocyclic octaseleno metallates [M(Se4)2]2?, tetrahedral WSe42-ions, and disordered DMF Molecules.  相似文献   

8.
Preparation, Raman Spectra, and Crystal Structures of V2O3(SO4)2, K[VO(SO4)2], and NH4[VO(SO4)2] The oxo-sulfato-vanadates(V) V2O3(SO4)2, K[VO(SO4)2], and NH4[VO(SO4)2] have been prepared as crystals suitable for X-ray structure determination. In all structures sulfate acts as an unidentate ligand only toward a single vanadium atom. The structure of V2O3(SO4)2 consists of a threedimensional network of pairs of cornershared VO6 octahedra with one terminal oxygen atom each, and SO4 tetrahedra. All oxygen atoms of the sulfate ions are coordinated. NH4[VO(SO4)2] and K[VO(SO4)2] are isostructural. VO6 octahedra with one terminal oxygen atom and pairs of sulfate tetrahedra form infinite chains by corner sharing. The chains are weakly interlinked to layers. The sulfate ions are distorted towards planar SO3 molecules and single oxygen atoms attached to vanadium. This structural detail gives an explanation for the mechanism of the reversible reaction K[VO(SO4)2] ? K[VO2(SO4)] + SO3 at 400°C. Raman spectra of the compounds have been recorded and interpreted with respect to their structures. Crystal data: V2O3(SO4)2, monoclinic, space group P21/a, a = 947.2(4), b = 891.3(3), c? 989.1(4) pm, β = 104.56(3)°, Z = 4, 878 unique data, R(Rw) = 0.039(0,033); K[VO(SO4)2], orthorhombic, space group P212121, a = 495.3(2), b = 869.6(9), c = 1 627(1)pm, Z = 4, 642 unique data, R(Rw) = 0,11(0,10); NH4[VO(SO4)2], orthorhombic, space group P212121, a = 495.3(1), b = 870.0(2), c = 1 676.7(4)pm, Z = 4, 768 unique data, R(Rw) = 0.088(0.083).  相似文献   

9.
Preparation and Crystal Structure of the First Mixed Alkalimetal Hydrogencarbonates NaA2[H(CO3)2] · 2H2O with A = K, Rb The new hydrogencarbonates NaK2[H(CO3)2] · 2H2O (Pnma, a = 934.07(13) pm, b = 789.31(10) pm, c = 1142.1(5) pm, VEZ = 842.0(4) · 106 pm3, Z = 4, R1 (I ? 2σ(I)) = 0.023, wR2 = 0.066 for 989 reflections) and NaRb2[H(CO3)2] · 2H2O (Pnma, a = 948.24(11) pm, b = 811.37(9) pm, c = 1189.0(2) pm, VEZ = 914.8(2) · 106 pm3, Z = 4, R1 (I ≤ 2σ(I)) = 0.031, wR2 = 0.077 for 1063 reflections) were prepared from aqueous solutions. The crystal structures were determined. The isostructural compounds contain dimeric, non centrosymmetric [H(CO3)2]3? anions. In NaK2[H(CO3)2] · 2H2O a short hydrogen bond (d(O … O) = 246.1(2) pm) with an asymmetric potential was detected. In NaRb2[H(CO3)2] · 2H2O a hydrogen bond with symmetric potential (d(O … O) = 247.8(5) pm) can be assumed. The IR-spectra of NaK2[H(CO3)2] · 2H2O and Na3[H(CO3)2] · 2H2O are compared.  相似文献   

10.
The three new thioantimonates(V) [Ni(chxn)3]3(SbS4)2·4H2O ( I ), [Co(chxn)3]3(SbS4)2·4H2O ( II ) (chxn is trans‐1,2‐diaminocyclohexane) and [Co(dien)2][Co(tren)SbS4]2·4H2O ( III ) (dien is diethylenetriamine and tren is tris(2‐aminoethyl)amine) were synthesized under solvothermal conditions. Compounds I and II are isostructural crystallizing in space group C2/c. The structures are composed of isolated [M(chxn)3]2+ complexes (M = Ni, Co), [SbS4]3? anions and crystal water molecules. Short S···N/S···O/O···O separations indicate hydrogen bonding interactions between the different constituents. Compound III crystallizes in space group and is composed of [Co(dien)2]2+ and [Co(tren)SbS4]? anions and crystal water molecules. In the cationic complex the Co2+ ion is in an octahedral environment of two dien ligands whereas in [Co(tren)SbS4]? the Co2+ ion is in a trigonal bipyramidal coordination of four N atoms of tren and one S atom of the [SbS4]3? anion, i.e., two different coordination polyhedra around Co2+ coexist in this compound. Like in the former compounds an extended hydrogen bonding network connects the complexes and the water molecules into a three‐dimensional network.  相似文献   

11.
Synthesis, Crystal Structure, and Phase Transition of Se4(MoOCl4)2 Dark green, very air sensitive crystals of Se4(MoOCl4)2 are formed from selenium and MoOCl4 at 190°C in a sealed, evacuated glass ampoule in quantitative yield. The structure is built of nearly square planar Se42+ ions and centrosymmetric dimeric MoOCl4? ions which are linked by bridging Cl atoms. At ?21°C Se4(MoOCl4)2 undergoes a reversible solid state phase transition of first order. Structure determinations at ?70°C and 23°C show that during the phase transition the structures of the ions remain unchanged, while the orientations of the ions with respect to each other change in such a way that in the low temperature form the Se42+ ions obtain a higher coordination number by Cl and O atoms of neighboring MoOCl4? ions.  相似文献   

12.
1‐Butyl‐4‐methylpyridinium hexachloridotantalate(V), [BMPy][TaCl6] ( 1 ), tetrakis(1‐butyl‐4‐methylpyridinium) bis(hexachloridotantalate(V) (μ‐oxido)‐decachloridotantalate(V), [BMPy]4[(TaCl6)2(Ta2OCl10)] ( 2 ), and bis(1‐ethyl‐3‐methylimidazolium)‐(μ‐oxido)‐decachloridoditantalate(V), [EMIm]2[Ta2OCl10] ( 3 ) were synthesized and characterized by single‐crystal X‐ray diffraction and vibrational spectroscopy. Compounds 1 and 3 crystallize in the monoclinic space group P21/c (no. 14), whereas compound 2 crystallizes in the triclinic space group P (no. 2). All compounds are built up by the mentioned bulky organic cations and octahedral [TaCl6] respective linear [Ta2OCl10]2– anions. Coulomb interactions are dominant between the ionic species. FT‐IR and FT‐Raman spectra were recorded and interpreted, especially with respect to the inorganic species [TaCl6] (Oh) and [Ta2OCl10]2– (Ci symmetry, approximately D4h). The melting temperatures of compounds 1 – 3 are given.  相似文献   

13.
Dithiolylium Chlorooxomolybdates(V): Synthesis and Crystal Structure of (C3Cl3S2)[MoOCl4] and (C3Cl3S2)[Mo2O2Cl7] The reaction of 3, 4, 5‐Trichlor‐1, 2‐dithiolylium chloride with MoOCl3 in dichlormethane under solvothermal conditions at 65 °C simultaneously yields the green tetrachlorooxomolybdate(V) (C3Cl3S2)[MoOCl4] and the yellow‐brown heptachlorodioxodimolybdate(V) (C3Cl3S2)[Mo2O2Cl7]. The crystal structures of both compounds contain nearly planar (C3Cl3S2)+ ions with a S—S bond length of 203 pm. The discrete [MoOCl4] ion in the structure of (C3Cl3S2)[MoOCl4] has the shape of a square pyramid with the oxygen atom at the apex. The molybdenum atom is displaced by 58 pm from the basal plane towards the oxygen atom. The [Mo2O2Cl7] ion in the structure of (C3Cl3S2)[Mo2O2Cl7] has the form of a face‐sharing double octahedron. It is formally composed of a [MoOCl4] ion and a MoOCl3 molecule connected by one symmetrical and two unsymmetrical chloro bridges. The molybdenum atoms placed in the centers of such connected octahedra are 357 pm apart, indicating no Mo—Mo bond.  相似文献   

14.
Synthesis and Structure of the Ternary Ammonium Nitrates (NH4)2[M(NO3)5] (M = Tb? Lu, Y) Single crystals of the ternary ammonium nitrates (NH4)2[M(NO3)5] (M = Tb? Lu, Y) are obtained from the solution of the sesquioxides in a melt of NH4NO3 and sublimation of the excess NH4NO3. In the crystal structure of (NH4)2[Tm(NO3)5] (trigonal, P31, Z = 3; a = 1 123.76(8), c = 930.1(1) pm; R = 0.062; Rw = 0.034) Tm3+ is surrounded by five bidentate nitrate ligands. The isolated [Tm(NO3)5]2? groups are held together by ammonium ions.  相似文献   

15.
On the Constitution of Peroxotantalates(V) with Alkali Metals: On the Structure of K3[Ta(O2)4] [1] By solving of recently precipitated Ta2O5 · aq in a 1.5-molar solution of KOH in 3% H2O2 and subsequently cooling at 0°C we obtained colourless single-crystals of K3[Ta(O2)4]. The compound crystallizes tetragonal (spacegroup 142m) with a = 679.5(1) pm, c = 791.2(1) pm, Z = 2 (Guinier-de-Wolff powder data). The determinated crystal structure (four-circle diffractometer, 444 out of 444 I0(hkl); R = 1.51%, Rw = 1.48%, parameters see text) proves that K3[Ta(O2)4] is isotypic with K3[Cr(O2)4] [2]. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, these calculated via Mean Fictive Ionic Radii, as well as charge distribution (CHARDI) are calculated and discussed.  相似文献   

16.
Syntheses and Properties of Di‐tert‐butylphosphides [M(PtBu2)2]2 (M = Zn, Hg) and [Cu(PtBu2)]4 The phosphides [M(PtBu2)2]2 (M = Zn, Hg) and [Cu(PtBu2)]4 are accessible from reaction of LiPtBu2 with ZnI2, HgCl2 and CuCl, respectively. [M(PtBu2)2]2 (M = Zn, Hg) are dimers in the solid state. X‐ray structural analyses of these phosphides reveal that [M(PtBu2)2]2 (M = Zn, Hg) contain four‐membered M2P2‐rings whereas [Cu(PtBu2)]4 features a planar eight‐membered Cu4P4‐ring. Degradation reaction of LiPtBu2(BH3) in the presence of HgCl2 results in the dimeric phosphanylborane BH3 adduct [tBu2PBH2(BH3)]2. X‐ray quality crystals of [tBu2PBH2(BH3)]2 (monoclinic, P21/n) are obtained from a pentane solution at 6 °C. According to the result of the X‐ray structural analysis, the O2‐oxidation product of [Hg(PtBu2)2]2, [Hg{OP(O)(tBu)OPtBu2}(μ‐OPtBu)]2, features in the solid state structure two five‐membered HgP2O2‐rings and a six‐membered Hg2P2O2‐ring. Herein the spiro‐connected Hg atoms are member of one five‐membered and of the six‐membered ring.  相似文献   

17.
18.
Synthesis and Molecular Structure of the Binuclear tert-Butyliminovanadium(IV) Complexes [(μ-NtC4H9)2V2(CH2CMe3)2X2] (X = OtC4H9, CH2CMe3) Syntheses of the neopentylvanadium(V) compounds tC4H9N?V(CH2CMe3)3?n(OtC4H9)n (n = 0 ( 7 ), 1 ( 6 ), 2) are described. 6 and 7 decompose by irradiation splitting off neopentane and yielding the binuclear diamagnetic neopentylvanadium(IV) complexes [(μ-NtC4H9)2V2(CH2CMe3)2X2] [X = OtC4H9 ( 8 ), CH2CMe3 ( 11 )]. All compounds obtained are characterized by 1H and 51V NMR spectroscopy. 8 has been found by X-ray diffraction analysis to be a binuclear complex with bridging tert-butylimino ligands and a vanadium—vanadium single bond. The complexes tC4H9N?V(CH2C6H5)(OtC4H9)2 and [(μ-NtC4H9)2V2(CH2SiMe3)2(OtC4H9)2] ( 10 ) have been also prepared; the crystal structure of 8 and 10 are nearly identical.  相似文献   

19.
Synthesis and Structures of γ-Halopropyl-octa(silasesquioxanes) As a more rapid and versatile synthetic approach, we have studied the FeCl3-catalyzed hydrolytic polycondensation of suited trichlorosilanes in a biphasic system which yields e.g. the new octa(silasesquioxane) (BrCH2CH2CH2)8Si8O12.  相似文献   

20.
Synthesis and Crystal Structure of Rb8[P4N6(NH)4](NH2)2 with the Adamantane-like Anion [P4N6(NH)4]6? RbNH2 reacts with P3N5 (molar ratio 6:1) at 400°C within 5 d to colourless Rb8[P4N6(NH)4](NH2)2. Suitable crystals for a X-ray structure determination were obtained: The compound contains adamantane-like molecular anions [P4N6(NH)4]6?. Their centres of gravity are arranged in a distorted hexagonal primitive array. All trigonal prisms of this array contain one amide ion. Rubidium ions connect the anions irregularly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号