首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Infrared and Raman Spectroscopy of the Isostructural Iodate Hydrates M(IO3)2 · 4 H2O (M = Mg, Ni, Co)-Crystal Structure of Cobalt Iodate Tetrahydrate The iodate tetrahydrates Mg(IO3)2 · 4 H2O, β-Ni(IO3)2 · 4 H2O, Co(IO3)2 · 4 H2O and their deuterated specimens were studied by X-ray, infrared and Raman spectroscopic methods. The title compounds are isostructural crystallising in the monoclinic space group P21/c (Z = 2). The crystal structure of Co(IO3)2 · 4 H2O (a = 836.8(5), b = 656.2(3), c = 850.2(5) pm and β = 100.12(5)°) has been refined by single-crystal X-ray methods (Robs = 3.08%, 693 unique reflections I0 > 2σ(I)). Isolated Co(IO3)2(H2O)4 octahedra form layers parallel (100). Within these layers, the two crystallographically different hydrate water molecules form nearly linear hydrogen bonds to adjacent IO3 ions (νOD of matrix isolated HDO of Co(IO3)2 · 4 H2O (isotopically diluted samples) 2443 (H3), 2430 (H2), and 2379 cm–1 (H1 and H4), –180 °C). Intramolecular O–H and intermolecular H…O distances were derived from the novel νOD vs. rOH and the traditional νOD vs. rH…O correlation curves, respectively. The internal modes of the iodate ions of the title compounds are discussed with respect to their coupling with the librations of the hydrate H2O molecules, the distortion of the IO3 ions, and the influence of the lattice potential.  相似文献   

2.
A Novel Iodine(III, V) Mixed Valent Iodinepolyoxocation in (IO2)3HSO4 Previously unknown (IO2)3HSO4 is formed by action of firstly conc. H3PO4 upon HIO3 or H5IO6 at 310–330° C, and subsequently of conc. H2SO4 at room temperature. Its crystal structure (Pna21; a = 8.907(3), b = 20.464(6), c = 9.784(4) Å; Z = 8; 4354 diffractometer data; R = 0.087, Rw = 0.056) contain the novel polymeric cation (IO203nn+. Iodine(III) is coordinated square-planar by oxygen, iodine(V trigonal- pyramidal. The HSO4- anions are interconnected via hydrogen bonds. Raman and IR spectra are reported.  相似文献   

3.
NiH3IO6 · 6 H2O — Crystal Structures and Vibrational Spectra The crystal structure of NiH3IO6 · 6 H2O has been determined by X-ray single-crystal diffraction (Pc, Z = 2, a = 516.74(9), b = 981.5(2), c = 1052.5(2) pm, β = 116.496(8)°) on the basis of 4169 unique reflections (R = 1.96%). The structure is built up of distorted Ni(H2O)62+ and H3IO62? octahedra linked by hydrogen bonding. IR and Raman spectra of both the title compound and isostructural MgH3IO6 · 6 H2O as well as of deuterated specimens are given. There are up to 14 different OH(OD) modes in the spectra of isotopically dilute samples due to the 15 different hydrogen positions of the structure. The internal modes of the meridional H3IO62? ions (pseudo C2v symmetry) are discussed with respect to that double T-shaped entity, which gives rise to only two instead of 3I? O, I? O(H), and OH stretches in the IR and Raman spectra, i.e. the same as for facial (C3v) structured ions.  相似文献   

4.
Synthesis, Crystal Structure, and Thermal Decomposition of Mg(H2O)6[B12H12] · 6 H2O By reaction of an aqueous solution of the free acid (H3O)2[B12H12] with MgCO3 and subsequent isothermic evaporation of the resulting solution to dryness, colourless, bead‐shaped single crystals of the dodecahydrate of magnesium dodecahydro closo‐dodecaborate Mg(H2O)6[B12H12] · 6 H2O (cubic, F4132; a = 1643.21(9) pm, Z = 8) emerge. The crystal structure is best described as a NaTl‐type arrangement in which the centers of gravity of the quasi‐icosahedral [B12H12]2— anions (d(B—B) = 178—180 pm, d(B—H) = 109 pm) occupy the positions of Tl while the Mg2+ cations occupy the Na+ positions. A direct coordinative influence of the [B12H12]2— units at the Mg2+ cations is however not noticeable. The latter are octahedrally coordinated by six water molecules forming isolated hexaaqua complex cations [Mg(H2O)6]2+ (d(Mg—O) = 206 pm, 6×). In addition, six “zeolitic” water molecules are located in the crystal structure for the formation of a strong O—Hδ+···δ—O‐hydrogen bridge‐bonding system. The evidence of weak B—Hδ—···δ+H—O‐hydrogen bonds between water molecules and anionic [B12H12]2— clusters is also considered. Investigations on the dodecahydrate Mg[B12H12] · 12 H2O (≡ Mg(H2O)6[B12H12] · 6 H2O) by DTA/TG measurements showed that its dehydration takes place in two steps within a temperature range of 71 and 76 °C as well as at 202 °C, respectively. Thermal treatment eventually leads to the anhydrous magnesium dodecahydro closo‐dodecaborate Mg[B12H12].  相似文献   

5.
Crystal Structure, Infrared and Raman Spectra of Copper Trihydrogenperiodate Monohydrate, CuH3IO6 · H2O The hitherto unknown compound CuH3IO6 · H2O was studied by X‐ray, IR‐ and Raman spectroscopic methods. The crystal structure was determined by X‐ray single‐crystal studies (space group P212121, Z = 4, a = 532.60(10), b = 624.00(10), c = 1570.8(3) pm, R1 = 1.85%, 1559 unique reflections (I > 2σ(I))). Isolated, meridionally configurated H3IO62– ions are coordinated to the copper ions forming double‐ropes in [100]. These ropes are connected in [010] and [001] by hydrogen bonds. The copper ions possess a square pyramidal co‐ordination with the hydrate H2O on top. The infrared and Raman spectra as well as group theoretical treatment are presented and discussed with respect to the strength of the hydrogen bonds and the co‐ordination of the CuO5(+1) polyhedra and the H3IO62– ions at the C1 lattice sites. The hydrogen bonds of the H2O molecules and H3IO62– ions (HO–H…O–IO5H3 and H2IO5O–H…O–IO5H3) greatly differ in strength, as shown from both the respective O…O distances: 282.6 and 298.6 pm (H2O), and 258.8, 259.7, and 270.9 pm (H3IO62–) and the OD stretching modes of isotopically dilute samples: 2498 and 2564 cm–1 (90 K) (HDO), and 1786, 2024, and 2188 cm–1 (H2DIO62–). The IO stretching modes of the H3IO62– ions (696–788 cm–1 and 555–658 cm–1, 295 K) display the different strength of the respective I–O and I–O(H) bonds (rI–O: 181.1–188.3 pm and 189.2–194.5 pm).  相似文献   

6.
Zinc Iodates – Infrared and Raman Spectra, Crystal Structure of Zn(IO3)2 · 2 H2O The zinc iodates Zn(IO3)2 · 2 H2O and Zn(IO3)2 as well as α‐Co(IO3)2 · 2 H2O were studied by X‐ray, IR‐ and Raman spectroscopic methods. The crystal structure of the dihydrate, which is isostructural with the respective cobalt compound, was determined by X‐ray single‐crystal studies (space group P1, Z = 2, a = 490,60(4), b = 667,31(5), c = 1088,85(9) pm, α = 98,855(6), β = 91,119(7), and γ = 92,841(6)°, R1 = 2,55%, 2639 unique reflections I > 2σ(I)). Transconfigurated Zn(IO3)4(H2O)2 octahedra are threedimensionally connected via common IO3 ions parallel to [001] and hydrogen bonds parallel to [100] and [010], respectively. Anhydrous Zn(IO3)2 crystallizes in space group P21 (Z = 2) with a = 548,9(2), b = 512,4(1), c = 941,8(2) pm, and β = 90,5(3)°. The structure of Zn(IO3)2 is a monoclinically distorted variant of the structures of β‐Ni(IO3)2 (space group P63) and Co(IO3)2 (P3). The O–H … O–IO2 hydrogen bonds of the crystallographically different H2O molecules of the dihydrates (νOD (OD stretching modes of isotopically dilute samples) 2430, 2415, 2333 and 2300 cm–1, Zn(IO3)2 · 2 H2O, 90 K) are examples to the matter of fact that O … O distances are only a bad measure for the strength of hydrogen bonds. The infrared and Raman spectra as well as a group theoretical treatment are presented and discussed with respect to mutual exclusion principle (possible space groups), the strength of the hydrogen bonds and the distortion of the IO3 ions at the C1 lattice sites.  相似文献   

7.
Salts of Halogenophosphoric Acids. XVII. Preparation and Crystal Structure of Copper(II) Monofluorophosphate Dihydrate CuPO3F · 2H2O Copper(II) monofluorophosphate dihydrate, CuPO3F · 2H2O 1 was obtained by the reaction of aqueous NH4HPO3F and acid (NH4)2PO3F solutions, respectively, using acetone or ethanol as precipitating agents. The thermal dehydration of 1 gives the water-free copper monofluorophosphate CuPO3F ( 2 ). 1 crystallizes in the monoclinic space group P21/c with a = 761,44, b = 780,97, c = 921,02 pm, β = 112,94° and Z = 4.  相似文献   

8.
Synthesis, Crystal Structure and Thermal Behaviour of Cs1,5[Re3I3Cl7,5(H2O)1,5] Dark brown tetrahedra of Cs1,5[Re3I3Cl7,5(H2O)1,5] crystallize on slow cooling of a hot saturated solution of ReI3 and CsCl in conc. hydrochlorid acid. The crystal structure (cubic, P4 3m (No. 215), a = 1241.06(3)pm, Vm = 287.8(1) cm3mol?1, Z = 4, R = 0.067, Rw = 0.037) is built up from isolated building units [Re3I3Cl7,5(H2O)1,5]1,5? with statistical distribution of chloride ions and water molecules in the in plane, terminal positions. Consistent with the result based on the X-ray analysis, the IR-spectrum shows one band for the OH stretching frequencies of the water molecules coordinated to the Re3 triangle at 3240 cm?1. The anions are arranged in the fashion of a cubic closest packing with the cesium ions occupying all octahedral and one quarter of the tetrahedral interstices. Temperature-dependent Guinier-Simon photographs in connection with DTA/TG investigations reveal that Cs1,5[Re3I3Cl7,5(H2O)1,5] releases water at 190°C accompanied with a structural transition and the dehydration product decomposes at 370°C to Cs2ReCl6?xIx, Re3I3+yCl6?y and rhenium metal.  相似文献   

9.
Preparation, Raman Spectra, and Crystal Structures of V2O3(SO4)2, K[VO(SO4)2], and NH4[VO(SO4)2] The oxo-sulfato-vanadates(V) V2O3(SO4)2, K[VO(SO4)2], and NH4[VO(SO4)2] have been prepared as crystals suitable for X-ray structure determination. In all structures sulfate acts as an unidentate ligand only toward a single vanadium atom. The structure of V2O3(SO4)2 consists of a threedimensional network of pairs of cornershared VO6 octahedra with one terminal oxygen atom each, and SO4 tetrahedra. All oxygen atoms of the sulfate ions are coordinated. NH4[VO(SO4)2] and K[VO(SO4)2] are isostructural. VO6 octahedra with one terminal oxygen atom and pairs of sulfate tetrahedra form infinite chains by corner sharing. The chains are weakly interlinked to layers. The sulfate ions are distorted towards planar SO3 molecules and single oxygen atoms attached to vanadium. This structural detail gives an explanation for the mechanism of the reversible reaction K[VO(SO4)2] ? K[VO2(SO4)] + SO3 at 400°C. Raman spectra of the compounds have been recorded and interpreted with respect to their structures. Crystal data: V2O3(SO4)2, monoclinic, space group P21/a, a = 947.2(4), b = 891.3(3), c? 989.1(4) pm, β = 104.56(3)°, Z = 4, 878 unique data, R(Rw) = 0.039(0,033); K[VO(SO4)2], orthorhombic, space group P212121, a = 495.3(2), b = 869.6(9), c = 1 627(1)pm, Z = 4, 642 unique data, R(Rw) = 0,11(0,10); NH4[VO(SO4)2], orthorhombic, space group P212121, a = 495.3(1), b = 870.0(2), c = 1 676.7(4)pm, Z = 4, 768 unique data, R(Rw) = 0.088(0.083).  相似文献   

10.
A New Access to Alkali Vanadates(IV,V) Crystal Structure of Rb2V3O8 By heating vanadium(V) oxide with rubidium iodide to 500°C, the vanadium experiences partial reduction and Rb2V3O8 is obtained. It has the fresnoite structure. Crystal data: a = 892.29(7), c = 554.49(9) pm at 20°C, tetragonal, space group P4bm, Z = 2. X-ray crystal structure determination with 620 observed reflexions, R = 0.027. V2O7 units share vertices with VO5 square pyramids, forming layers; a layer can be regarded as association product of VO2+ and V2O74? ions. The Rb+ ions between the layers have pentagonal-antiprismatic coordination.  相似文献   

11.
Structure and Thermal Degradation of Bis(1,3-diketonato)cobaltbisimidazoles The crystal structure of Co(bzac)2(HIm)2. 2MeOH ( I ) and Co(acac)2(HIm)2 ( II ) were determined by x-ray diffraction. II : triclinic, space group P1 , Z = 2, a = 746.3(1), b = 948.2(1), c = 1396.7(2)pm, α = 85.18(1)°, β = 88.96(1)°, γ = 80.72(1)°, R = 3.0% for a total of 2194 observed reflections. I : monoclinic, P21/c, Z = 2, a = 964.2(3), b = 864.5(2), c = 1769.8(4)pm, β = 98.87(2)°, R = 4.7% for a total of 967 observed reflections. In both compounds centrosymmetric molecules with two bidentate diketonato groups and two imidazole ligands in trans-position are present. The molecules of II are linked by N? H…?O-bridges within layers, while in the lattice of I by the interaction with methanol molecules N-H…?O-H…?O-bridges are formed. The nature of the H-bridges is the deciding factor for the first step of the thermal degradation of the complexes. The N-H…?O-bridges of II relieves the change of the acidic protons of the imidazole to the acetylacetonato ligands. Therefore in the first step acetylacetone is eliminated. No such bridges are present in the complex I . Therefore, in the first step, imidazole and methanol are removed. On heating in O-donor solvents the reaction of I is quite analogous, and this is the reason for the application of this complex as a latent initiator of the epoxide polymerisation.  相似文献   

12.
A New Oxophosphate (IV/III) Anion – Preparation and Crystal Structure of Na6P4O10 · 2 H2O A new oxophosphate anion, P4O106?, was obtained by cleavage and simultaneous oxidation of the cyclo-hexaphosphate(III) anion in a solution of aqueous ammonia and ethanol. With sodium it forms a salt with the composition Na6P4O10 · 2 H2O. The crystal structure has been determined by single crystal X-ray diffraction (3 745 diffractometer data), the cell constants were obtained from X-ray powder data, space group P1 ; a = 6.004(1), b = 6.173(2), c = 11.496(2) Å, α = 99.26(2)°, β = 95.92(2)°, γ = 117.63(2)°, Z = 1, R = 0.044. The backbone of the anion is formed by phosphorus atoms directly bonded to each other. The coordination of each phosphorus atom is completed to four by oxygene. The resulting oxidation numbers are +III for the inner phosphorus atoms and +IV for the terminal phosphorus atoms. The site symmetry of the anion is approximately C2h. Based on a 31P-NMR spectra of a solution the coupling constants of the AA ‘BB’ system were determined.  相似文献   

13.
The crystal structure of (KPO3)4 · 2H2O was solved by direct methods andFourier-syntheses (triclinic; P ;a=1 114.9 (2),b=821.9 (2),c=815.7 (3) pm; =88,88 (2), =84.51 (2), =82.70 (2)°;Z=2; 5910 unique reflections;R=0.052). The cyclic anions exhibit point symmetry S4 with four terminal oxygens in axial and four in equatorial position. Thermal investigations (DTA, TGA, X-Ray-methods) show that the dehydration occurs in two steps. The anhydrous form of (KPO3)4 is stable above 230 °C and undergoes a second order phase transition which is complete at 515±5 °C.
  相似文献   

14.
Preparation, Crystal Structure, Thermal Decomposition, and Vibrational Spectra of [Co(NH3)6]2[Be4O(CO3)6] · 10 H2O [Co(NH3)6]2[Be4O(CO3)6] · 10 H2O is a suitable compound for the quantitative determination of beryllium. It can be obtained by reaction of aqueous solutions of carbonatoberyllate with [Co(NH3)6]Cl3. The crystal structure (trigonal‐rhombohedral, R3c (Nr. 161), a = 1071,6(1) pm, c = 5549,4(9) pm, VEZ = 5519(1) · 106 pm3, Z = 6, R1(I ≥ 2σ(I)) = 0,037, wR2(I ≥ 2σ(I)) = 0,094) contains [Co(NH3)6]3+‐ and [Be4O(CO3)6]6–‐ions, which are directly hydrogen bonded as well as with water molecules. The complex cations and anions occupy the positions of a distorted anti‐CaF2‐type. The thermal decomposition, IR and Raman spectra are presented and discussed.  相似文献   

15.
New Alkylchlorosulfonium Salts and Crystal Structure of Diethylchlorosulfonium-Hexachloroantimonate (C2H5)2SCl+SbCl6? We describe the preparation and spectroscopic characterization of Dialkylchlorosulfonium-Hexachloroantimonates R2SCl+SbCl6? (R = C2H5, i-C3H7) and the crystal structure of Diethylchlorosulfonium-Hexachloroantimonate (C2H5)2SCl+SbCl6? at 172(1) K. The salt crystallize in the orthorhombic space group P212121 with a = 980.4(13) pm, b = 1010.6(8) pm, c = 1492.8(14) pm with four formula units per unit cell.  相似文献   

16.
Single crystals of the title compound are prepared by hydrothermal reaction of VF3 and H2SeO3 in ethylene glycol/HF (40%) in the presence of Et2NH (autoclave, 393 K, 4 d).  相似文献   

17.
On the Crystal Structure of Barium Acetylene Dicarboxylate Monohydrate – Ba[C2(COO)2] · H2O Ba[C2(COO)2] · H2O crystallizes in the monoclinic space group P21/a. The lattice constants are a = 753.4(2), b = 921.8(2), c = 881.8(2) pm and β = 102.00(2)°. The crystal structure is characterized by an intricate three-dimensional framework made up by Ba2+ and [C2(COO)2]2? ions. Ba2+ has coordination number 9 and is bound to two water molecules and seven oxygen atoms belonging to carboxylate groups of the dianion. The [C2(COO)2]2? ion does not merely act like a multiple monodentate ligand, but coordinates Ba2+ in a chelate-like manner as well. The carboxylate groups of the dianion are inclined to each other by 65°.  相似文献   

18.
Using a new spectroscopic method, the gas phase IR spectra of the title cluster ions, produced in a high pressure corona discharge source, are observed between 3550 and 3800 cm-1.  相似文献   

19.
Synthesis and Crystal Structure of Cobalt(II)-hexaoxodiphosphate(P? P)(4?)-dodecahydrate, Co2P2O6 · 12 H2O Co2P2O6 · 12H2O was obtained by cleavage and simultaneous oxidation of cyclo-hexaphosphate(III) in a solution of ethanol and aqueous ammonia. The crystal structure has been determined (1 898 independent diffractometer data): space group Pbam (No. 55), a = 6.710(2), b = 12.196(2), c = 10.073(3) Å, V = 825.3(1) Å3, Z = 2, R = 0.060. The P2O64? anions show site symmetry C2h and are connected to form chains via cobalt. Two cobalt ions together with two sets of four water molecules and two oxygen atoms of P2O64? form pairs of edge connected octahedra. The common edges are formed by the oxygen atoms of the P2O6 groups.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号