首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dimethyl diazomalonate ( 4 ) and thiobenzophenone ( 2a ) do not react in toluene even after warming to 50°. After addition of catalytic amounts of Rh2(OAc)4, a smooth reaction under N2 evolution afforded a mixture of thiiranedicarboxylate 5 and (diphenylmethylidene)malonate 6 (Scheme 2). A reaction mechanism via an intermediate ‘thiocarbonyl ylide’ 7 , formed by the addition of the carbenoid species 8 to the S-atom of 2a , is plausible. Similar reactions were carried out with 9H-xanthene-9-thione ( 2b ), 9H-thioxanthene-9-thione ( 2c , Scheme 4), and 1,3-thiazole-5(4H)-thione 18 (Scheme 6). In the cases of 2b and 2c , spirocyclic 1,3-dithiolanetetracarboxylates 14a and 14b , respectively, were obtained as the third product. Reaction mechanisms for their formation are proposed in Scheme 5: S-transfer from intermediate thiirane 12 to the carbenoid species yielded thioxomalonate 15 which underwent a 1,3-dipolar cycloaddition with ‘thiocarbonyl ylide’ 16 . An alternative is the formation of ‘thiocarbonyl ylide’ 17 via carbene addition to 15 , followed by 1,3-dipolar cycloaddition with 2b and 2c , respectively.  相似文献   

2.
The reactions of α-diazo ketones 1a,b with 9H-fluorene-9-thione ( 2f ) in THF at room temperature yielded the symmetrical 1,3-dithiolanes 7a,b , whereas 1b and 2,2,4,4-tetramethylcyclobutane-1,3-dithione ( 2d ) in THF at 60° led to a mixture of two stereoisomeric 1,3-oxathiole derivatives cis- and trans- 9a (Scheme 2). With 2-diazo-1,2-diphenylethanone ( 1c ), thio ketones 2a–d as well as 1,3-thiazole-5(4H)-thione 2g reacted to give 1,3-oxathiole derivatives exclusively (Schemes 3 and 4). As the reactions with 1c were more sluggish than those with 1a,b , they were catalyzed either by the addition of LiClO4 or by Rh2(OAc)4. In the case of 2d in THF/LiClO4 at room temperature, a mixture of the monoadduct 4d and the stereoisomeric bis-adducts cis- and trans- 9b was formed. Monoadduct 4d could be transformed to cis- and trans- 9b by treatment with 1c in the presence of Rh2(OAc)4 (Scheme 4). Xanthione ( 2e ) and 1c in THF at room temperature reacted only when catalyzed with Rh2(OAc)4, and, in contrast to the previous reactions, the benzoyl-substituted thiirane derivative 5a was the sole product (Scheme 4). Both types of reaction were observed with α-diazo amides 1d,e (Schemes 5–7). It is worth mentioning that formation of 1,3-oxathiole or thiirane is not only dependent on the type of the carbonyl compound 2 but also on the α-diazo amide. In the case of 1d and thioxocyclobutanone 2c in THF at room temperature, the primary cycloadduct 12 was the main product. Heating the mixture to 60°, 1,3-oxathiole 10d as well as the spirocyclic thiirane-carboxamide 11b were formed. Thiirane-carboxamides 11d–g were desulfurized with (Me2N)3P in THF at 60°, yielding the corresponding acrylamide derivatives (Scheme 7). All reactions are rationalized by a mechanism via initial formation of acyl-substituted thiocarbonyl ylides which undergo either a 1,5-dipolar electrocyclization to give 1,3-oxathiole derivatives or a 1,3-dipolar electrocyclization to yield thiiranes. Only in the case of the most reactive 9H-fluorene-9-thione ( 2f ) is the thiocarbonyl ylide trapped by a second molecule of 2f to give 1,3-dithiolane derivatives by a 1,3-dipolar cycloaddition.  相似文献   

3.
Reaction of Ethyl Diazoacetate with 1,3-Thiazole-5(4H)-thiones Reaction of ethyl diazoacetate ( 2a ) and 1,3-thiazole-5(4H)-thiones 1a,b in Et2O at room temperature leads to a complex mixture of the products 5–9 (Scheme 2). Without solvent, 1a and 2a react to give 10a in addition to 5a–9a . In Et2O in the presence of aniline, reaction of 1a,b with 2a affords the ethyl 1,3,4-thiadiazole-2-carboxylate 10a and 10b , respectively, as major products. The structures of the unexpected products 6a, 7a , and 10a have been established by X-ray crystallography. Ethyl 4H-1,3-thiazine-carboxylate 8b was transformed into ethyl 7H-thieno[2,3-e][1,3]thiazine-carboxylate 11 (Scheme 3) by treatment with aqueous NaOH or during chromatography. The structure of the latter has also been established by X-ray crystallography. In the presence of thiols and alcohols, the reaction of 1a and 2a yields mainly adducts of type 12 (Scheme 4), compounds 5a,7a , and 9a being by-products (Table 1). Reaction mechanisms for the formation of the isolated products are delineated in Schemes 4–7: the primary cycloadduct 3 of the diazo compound and the C?S bond of 1 undergoes a base-catalyzed ring opening of the 1,3-thiazole-ring to give 10 . In the absence of a base, elimination of N2 yields the thiocarbonyl ylide A ′, which is trapped by nucleophiles to give 12 . Trapping of A ′, by H2O yields 1,3-thiazole-5(4H)-one 9 and ethyl mercaptoacetate, which is also a trapping agent for A ′, yielding the diester 7 . The formation of products 6 and 8 can be explained again via trapping of thiocarbonyl ylide A ′, either by thiirane C (Scheme 6) or by 2a (Scheme 7). The latter adduct F yields 8 via a Demjanoff-Tiffeneau-type ring expansion of a 1,3-thiazole to give the 1,3-thiazine.  相似文献   

4.
1,5-Dipolar Electrocyclization of Acyl-Substituted ‘Thiocarbonyl-ylides’ to 1,3-Oxathioles The reaction of α-diazoketones 15a, b with 4,4-disubstituted 1,3-thiazole-5(4H)-thiones 6 (Scheme 3), adamantanethione ( 17 ), 2,2,4,4-tetramethyl-3-thioxocyclobutanone ( 19 ; Scheme 4), and thiobenzophenone ( 22 ; Scheme 5), respectively, at 50–90° gave the corresponding 1,3-oxathiole derivatives as the sole products in high yields. This reaction opens a convenient access to this type of five-membered heterocycles. The structures of three of the products, namely 16c, 16f , and 20b , were established by X-ray crystallography. The key-step of the proposed reaction mechanism is a 1,5-dipolar electrocyclization of an acyl-substituted ‘thiocarbonyl-ylide’ (cf. Scheme 6). The analogous reaction of 15a, b with 9H-xanthen-9-thione ( 24a ) and 9H-thioxanthen-9-thione ( 24b ) yielded α,β-unsaturated ketones of type 25 (Scheme 5). The structures of 25a and 25c were also established by X-ray crystallography. The formation of 25 proceeds via a 1,3-dipolar electrocyclization to a thiirane intermediate (Scheme 6) and desulfurization. From the reaction of 15a with 24b in THF at 50°, the intermediate 26 (Scheme 5) was isolated. In the crude mixtures of the reactions of 15a with 17 and 19 , a minor product containing a CHO group was observed by IR and NMR spectroscopy. In the case of 19 , this side product could be isolated and was characterized by X-ray crystallography to be 21 (Scheme 4). It was shown that 21 is formed – in relatively low yield – from 20a . Formally, the transformation is an oxidative cleavage of the C?C bond, but the reaction mechanism is still not known.  相似文献   

5.
The reaction of thiobenzophenone (= diphenylmethanethione; 8a ) or 9H-fluorene-9-thione ( 8b ) and methyl fumarate ( 9 ) in excess PhN3 at 80° yields a mixture of diastereoisomeric thiiranes 10 and 11 (Scheme 1). A mechanism involving the initial formation of 1-phenyl-4, 5-dihydro-1H-1, 2, 3-triazole-4, 5-dicarboxylate 12 by 1, 3-dipolar cycloaddition of PhN3 and 9 is proposed in Scheme 2. The diazo compound 13 , which is in equilibrium with 12 , undergoes a further 1, 3-dipolar cycloaddition with thioketones 8 to give 2, 5-dihydro-1, 3, 4-thiadiazoles 14 . Elimination of N2 yields the thiocarbonyl ylide 15 which cyclizes to the corresponding thiirane. Desulfurization of the thiiranes 10 and 11 with hexamethylphosphorous triamide leads to the olefinic compounds 16 (Scheme 3). The crystal structures of 10a , 11a , and 16b were determined.  相似文献   

6.
The reactions of 1,3‐dioxolane‐2‐thione ( 3 ) with (S)‐2‐methyloxirane ((S)‐ 1 ) and with (R)‐2‐phenyloxirane ((R)‐ 2 ) in the presence of SiO2 in anhydrous dichloroalkanes led to the optically active spirocyclic 1,3‐oxathiolanes 8 with Me at C(7) and 9 with Ph at C(8), respectively (Schemes 2 and 3). The analogous reaction of 1,3‐dimethylimidazolidine‐2‐thione ( 4a ) with (R)‐ 2 yielded stereoselectively (S)‐2‐phenylthiirane ((S)‐ 10 ) in 83% yield and 97% ee together with 1,3‐dimethylimidazolidin‐2‐one ( 11a ). In the cases of 3‐phenyloxazolidine‐2‐thione ( 4b ) and 3‐phenylthiazolidine‐2‐thione ( 4c ), the reaction with (RS)‐ 2 yielded the racemic thiirane (RS)‐ 10 , and the corresponding carbonyl compounds 11b and 11c (Scheme 4 and Table 1). The analogous reaction of 4a with 1,2‐epoxycyclohexane (= 7‐oxabicyclo[4.1.0]heptane; 7 ) afforded thiirane 12 and the corresponding carbonyl compound 11a (Scheme 5). On the other hand, the BF3‐catalyzed reaction of imidazolidine‐2‐thione ( 5 ) with (RS)‐ 2 yielded the imidazolidine‐2‐thione derivative 13 almost quantitatively (Scheme 6). In a refluxing xylene solution, 1,3‐diacetylimidazolidine‐2‐thione ( 6 ) and (RS)‐ 2 reacted to give two imidazolidine‐2‐thione derivatives, 13 and 14 (Scheme 7). The structures of 13 and 14 were established by X‐ray crystallography (Fig.).  相似文献   

7.
Reaction of 3-(Dimethylamino)-2H-azirines with 1,3-Benzoxazole-2(3H)-thione The reaction of 3-(dimethylamino)-2H-azirines 2 with 1,3-benzoxazole-2(3H)-thione ( 5 ), which can be considered as NH-acidic heterocycle (pKaca. 7.3), in MeCN at room temperature, leads to 3-(2-hydroxyphenyl)-2-thiohydantoins 6 and thiourea derivatives of type 7 (Scheme 2). A reaction mechanism for the formation of the products via the crucial zwitterionic intermediate A ′ is suggested. This intermediate was trapped by methylation with Mel and hydrolysis to give 9 (Scheme 4). Under normal reaction conditions, A ′ undergoes a ring opening to B which is hydrolyzed during workup to yield 6 or rearranges to give the thiourea 7. A reasonable intermediate of the latter transformation is the isothiocyanate E (Scheme 3) which also could be trapped by morpholine. In i-PrOH at 55–65° 2a and 5 react to yield a mixture of 6a , 2-(isopropylthio)-1,3-benzoxazole ( 12 ), and the thioamide 13 (Scheme 5). A mechanism for the surprising alkylation of 5 via the intermediate 2-amino-2-alkoxyaziridine F is proposed. Again via an aziridine, e.g. H ( Scheme 6 ), the formation of 13 can be explained.  相似文献   

8.
Reaction of 3-(Dimethylamino)-2H-azirines with 1,3-Thiazolidine-2-thione Reaction of 3-(dimethylamino)-2H-azirines 1 and 1,3-thiazolidine-2-thione ( 6 ) in MeCN at room temperature leads to a mixture of perhydroimidazo[4,3-b]thiazole-5-thiones 7 and N-[1-(4,5-dihydro-1,3-thiazol-2-yl)alkyl]-N′,N′-dimethylthioureas 8 (Scheme 2), whereas, in i-PrOH at ca. 60°, 8 is the only product (Scheme 4). It has been shown that, in polar solvents or under Me2NH catalysis, the primarily formed 7 isomerizes to 8 (Scheme 4). The hydrolysis of 7 and 8 leads to the same 2-thiohydantoine 9 (Scheme 3 and 5). The structure of 7a, 8c , and 9b has been established by X-ray crystallography (Chapt. 4). Reaction mechanisms for the formation and the hydrolysis of 7 and 8 are suggested.  相似文献   

9.
Regioselective 1,3-Dipolar Cycloadditions of a ‘Thiocarbonyl-methanide’ ((Alkylidenesulfonio)methanide) with Aromatic Sulfines Reaction of the spirocyclic 2,5-dihydro-1,3,4-thiadiazole 7 and thiobenzophenone S-oxide ( 6a ) in THF at 45° yielded the spirocyclic 1,3-dithiolane 1-oxide 8 , thiirane 9 , and the diazane derivative 10 in a ratio of 61:15:23 (Scheme 2). The formation of 8 is rationalized by a 1,3-dipolar cycloaddition of ‘thiocarbonyl-methanide’ 1 , generated from 7 by thermal elimination of N2, and the C?S bond of sulfine 6a . Cyclization of intermediate 1 leads to thiirane 9 . Under the same conditions, 7 and adamantane-2-thione S-oxide ( 6b ) or 2,2,4,4-tetramethyl-3-thioxocyclobutanone S-oxide ( 4 ) reacted to give only 9 and 10 but no cycloadduct of type 8 (Scheme 4). With the aim to favor the formation of 8 , a mixture of 6a and 1.1 equiv. of 7 was heated to 45° without any solvent in a sealed tube. The ratio of products was only slightly different from that of the thermolysis in THF. An analogous experiment with 7 and 9H-fluorene-9-thione S-oxide ( 6c ) yielded cycloadduct 13 and 9 (Scheme 5). It is most interesting that the 1,3-dipolar cycloadditions of 1 and the sulfines 6a and 6c proceeded with different regioselectivity. A reaction mechanism for the unexpected formation of 10 is proposed in Scheme 7. The key step is the base-catalyzed ring opening of 7 and the nucleophilic addition of the thereby formed thiolate 21 onto the sulfonium ion 19 .  相似文献   

10.
Diphenyl phosphorazidate (DPPA) was used as the azide source in a one-pot synthesis of 2,2-disubstituted 3-amino-2H-azirines 1 (Scheme 1). The reaction with lithium enolates of amides of type 2 , bearing two substituents at C(2), proceeded smoothly in THF at 0°; keteniminium azides C and azidoenamines D are likely intermediates. Under analogous reaction conditions, DPPA and amides of type 3 with only one substituent at C(2) gave 2-diazoamides 5 in fair-to-good yield (Scheme 2). The corresponding 2-diazo derivatives 6–8 were formed in low yield by treatment of the lithium enolates of N,N-dimethyl-2-phenylacetamide, methyl 2-phenylacetate, and benzyl phenyl ketone, respectively, with DPPA. Thermolysis of 2-diazo-N-methyl-N-phenylcarboxamides 5a and 5b yielded 3-substituted 1,3-dihydro-N-methyl-2H-indol-2-ones 9a and 9b , respectively (Scheme 3). The diazo compounds 5–8 reacted with 1,3-thiazole-5 (4H)-thiones 10 and thiobenzophenone ( 13 ) to give 6-oxa-1,9-dithia-3-azaspiro[4.4]nona-2,7-dienes 11 (Scheme 4) and thiirane-2-carboxylic acid derivatives 14 (Scheme 5), respectively. In analogy to previously described reactions, a mechanism via 1,3-dipolar cycloaddition, leading to 2,5-dihydro-1,3,4-thiadiazoles, and elimination of N2 to give the ‘thiocarbonyl ylides’ of type H or K is proposed. These dipolar intermediates with a conjugated C?O group then undergo either a 1,5-dipolar electrocyclization to give spirohetrocycles 11 or a 1,3-dipolar electrocyclization to thiiranes 14 .  相似文献   

11.
First Example of an H-Shift in ‘Thiocarbonyl Aminides’ (N-(Alkylidenesulfonio)aminides) Reaction of benzyl azide ( 15a ) with the sterically hindered C?S group of 4,4-dimethyl-1,3-thiazole-5(4H)-thiones 14 (Scheme 3) and 1,1,3,3-tetramethylindane-2-thione ( 17 , Scheme 4) at 80° leads to the corresponding imines in high yield, without formation of any by-product. In contrast, 15a and 2,2,4,4-tetramethyl-3-thioxocyclobutanone ( 7 ) under the same conditions yielded, in addition to imine 19 , products 20a and 21 (Scheme 5). For the formation of 20a , a reaction mechanism via [1,4]-H shift in the intermediate ‘thiocarbonyl aminides’ 23 is proposed (Scheme 6). Product 21 as well as the dithiazole derivative 22 , which is formed only in the reaction with 4-nitrobenzyl azide ( 15c ), are formal adducts of the dipole 23 . Whereas precedents are known for the formation of cycloadducts of type 22 , the pathway to 21 is not known. Two possible mechanisms of its formation are proposed in Schemes 8 and 9.  相似文献   

12.
1,3-Dipolar Cycloadditions of a Carhonyl-ylide with 1,3-Thiazole-5(4H)-thiones and Thioketones Inp-xylene at 150°, 3-phenyloxirane-2,2-dicarbonitrile ( 4b ) and 2-phenyl-3-thia-1-azaspiro[4.4]non-1-ene-4-thione ( 1a ) gave the three 1:1 adduets trans- 3a , cis- 3a , and 13a in 61, 21, and 3% yield, respectively (Scheme 3). The stereoisomers trans- 3a and cis- 3a are the products of a regioselective 1,3-dipolar cycloaddition of carbonylylide 2b , generated thermally by an electrocyclic ring opening of 4b (Scheme 6), and the C?S group of 1a . Surprisingly, 13a proved not to be a regioisomeric cycloadduct of 1a and 2b , but an isomer formed via cleavage of the O? C(3) bond of the oxirane 4b . A reaction mechanism rationalizing the formation of 13a is proposed in Scheme 6. Analogous results were obtained from the reaction of 4b and 4,4-dimethyl-2-phenyl-1,3-thiazole-5 (4H)-thione ( 1b , Scheme 3). The thermolysis of 4b in p-xylene at 130° in the presence of adamantine–thione ( 10 ) led to two isomeric 1:1 adducts 15 and 16 in a ratio of ca. 2:1, however, in low yield (Scheme 4). Most likely the products are again formed viathe two competing reaction mechanisms depicted in Scheme 6. The analogous reactions of 4b with 2,2,4,4-tetramethylcyclobutane-1,3-thione ( 11 ) and 9H-xanthene-9-thione ( 12 ) yielded a single 1:1 adduct in each case (Schemes). In the former case, spirocyclic 1,3-oxathiolane 17 , the product of the 1,3-dipolar cycloaddition with 2a corresponding to 3a , was isolated in only 11 % yield. It is remarkable that no 2:1 adduct was formed even in the presence of an excess of 4b. In contrast, 4b and 12 reacted smoothly to give 18 in 81 % yield; no cycloadduct of the carbonylylide 2a could be detected. The structures of cis- 3a , 13a , 15 , and 18 , as well as the structure of 14 , which is a derivative of trans- 3a , have been established by X-ray crystallography (Figs. 1–3, Table).  相似文献   

13.
Reaction of Di(tert-butyl)- and Diphenyldiazomethane and 1,3-Thiazole-5(4H)-thiones: Isolation and Crystal Structure of the Primary Cycloadduct Reactions of diazo compounds with C?S bonds proceed via the formation of thiocarbonyl ylides, which, under the reaction conditions, undergo either 1,3-dipolar cycloadditions or electrocyclic ring closer to thiiranes (Scheme 1). With the sterically hindered di(tert-butyl)diazomethane ( 2c ), 1,3-thiazole-5(4H)-thiones 1 react to give spirocyclic 2,5-dihydro-1,3,4-thiadiazoles 3 (Scheme 2). These adducts are stable in solution at ?20°, and they could be isolated in crystalline form. The structure of 3c was established by X-ray crystallography. In CDCl3 solution at room temperature, a cycloreversion occurs, and the adducts of type 3 are in an equilibrium with 1 and 2c . In contrast, the reaction of 1 with diphenyldiazomethane ( 2d ) gave spirocyclic thiiranes 4 as the only product in high yield (Scheme 3). The crystal structure of 4b was also determined by X-ray analysis. The desulfurization of compounds 4 to 4,5-dihydro-5-(diphenylmethylidene)-1,3-thiazoles 5 was achieved by treating 4 with triphenylphosphine in boiling THF. The crystal structure of 5f is shown.  相似文献   

14.
The reactions of 1,1,3,3-tetramethyl-8-thia-5,6-diazaspirol[3.4]oct-5-en-2-one ( 1a ) with imidazole-2-thiones 3 and pyrimidine-2(1H)-thione ( 6 ) in CHCl3 at 40 – 50° yield 2,2,4,4-tetramethylcyclobutanone dithioacetals of type 4 and 7 , respectively, by interception of the intermediate thiocarbonyl ylide 2a (Scheme 2). Thiirane 5 is formed as a minor product by 1,3-dipolar electrocyclization of 2a . When thioacetamide ( 8a ) and thiobenzamide ( 8b ) are used as trapping reagents, the primary adduct 10 undergoes a spontaneous cyclization by intramolecular nucleophilic addition of the imino group at the carbonyl group to yield bicyclic products of type 9 . The structure of 9a has been established by X-ray crystallography.  相似文献   

15.
The reactions of 1,4,5-trisubstituted imidazole 3-oxides 1a – k with cyclobutanethiones 5a , b in CHCl3 at room temperature give imidazole-2(3H)-thiones 9a – k in high yield. The second product formed in this reaction is 2,2,4,4-tetramethylcyclobutane-1,3-dione ( 6a ; Scheme 2). Similar reactions occur with 1 and adamantanethione ( 5c ) as thiocarbonyl compound, as well as with 1,2,4-triazole-4-oxide derivative 10 and 5a (Scheme 3). A reaction mechanism by a two-step formation of the formal cycloadduct of type 7 via zwitterion 16 is proposed in Scheme 5. Spontaneous decomposition of 7 yields the products of this novel sulfur-transfer reaction. The starting imidazole 3-oxides are conveniently prepared by heating a mixture of 1,3,5-trisubstituted hexahydro-1,3,5-triazines 3 and α-(hydroxyimino) ketones 2 in EtOH (cf. Scheme 1). As demonstrated in the case of 9d , a `one-pot' procedure allows the preparation of 9 without isolation of the imidazole 3-oxides 1 . The reaction of 1c with thioketene 12 leads to a mixture of four products (Scheme 4). The minor products, 9c and the ketene 15 , result from an analogous sulfur-transfer reaction (Path a in Scheme 5), whereas the parent imidazole 14 and thiiranone 13 are the products of an oxygen-transfer reaction (Path b in Scheme 5).  相似文献   

16.
Formation of 1,2,4-Trithiolanes in Three-Component Reactions of Phenyl Azide, Aromatic Thiones, and 2,2,4,4-Tetramethylcyclobutanethiones: A Sulfur-Transfer Reaction to ‘Thiocarbonyl-thiolates’ ((Alkylidenesulfonio)-thiolates) as Reactive Intermediates The reaction of PhN3 and aromatic thioketones 18 (two-component reaction) at 80° yields only the corresponding imines 22 , S, and N2. Under similar conditions, in the presence of sterically crowded 2,2,4,4-tetramethyl-cyclobutanethiones 19 (three-component reaction), 1,2,4-trithiolanes of type 20 are formed in good yields in addition to imines 22 (Scheme 4). In case of 19a and 19c (X = CO, CS), the symmetrical trithiolanes 21a and 21b , respectively, are also isolated. With 4,4-dimethyl-2-phenyl-1,3-thiazole-5(4H)-thione ( 24 ) instead of aromatic thioketone 18 , imine 25 , trithiolane 21a , and 1,4,2-dithiazolidine 26 are formed (Scheme 5). A reaction mechanism for the formation of 1,2,4-trithiolanes 20 and 21 , including an S-transfer to generate ‘thiocarbonyl-thiolates’ 2b and/or 2c and 1,3-dipolar cycloaddition with a thioketone, is proposed in Scheme 7.  相似文献   

17.
Reaction of 3-(Dimethylamino)-2H-azirines with 1,3-Oxazolidine-2-thione to 3-(2-Hydroxyethyl)-2- thiohydantoins The reaction of 3-(dimethylamino)-2H-azirines 1 and 1,3-oxazolidine-2-thione ( 6 ), in MeCN at room temperature, yields, after hydrolytic workup, 3-(2-hydroxyethyl)-2-thiohydantoins 7 (Scheme 2). In the case of the spirocyclic 1c , crystallization of the crude reaction mixture leads to spiro [cyclopentane-1, 7′(7′aH)-imidazo [4, 3-b] oxazole] -5′-thione 8c . The mechanism is discussed.  相似文献   

18.
1,3-Dipolar Cycloadditions of 2-(Benzonitrilio)-2-propanide with 4,4-Dimethyl-2-phenyl-2-thiazolin-5-thione and Carbon Disulfide Irradiation of 2,2-dimethyl-3-phenyl-2H-azirine ( 11 ) in the presence of 4,4-dimethyl-2-phenyl-2-thiazolin-5-thione ( 7 ) yields a mixture of the three (1:1)-ad-ducts 8 , 12 and 13 (Schemes 3 and 6). The formation of 8 and 12 can be explained by 1,3-dipolar cycloaddition of 2-(benzonitrilio)-2-propanide ( 1b ) to the C, S-double bond of 7. Photochemical isomerization of 12 leads to the third isomer 13 (Schemes 3 and 7). Photolysis of the azirine 11 in the presence of carbon disulfide gives a mixture of two (2:l)-adducts, namely 12 and 13 (Scheme 4). A reaction mechanism via the intermediate formation of the 3-thiazolin-5-thione b is postulated. The structure of the heterocyclic spiro compound 13 has been established by single-crystal X-ray structure determination (cf. Fig. 1 and 2).  相似文献   

19.
Radical Cyclizations of Alkenyl-Substituted 4,5-Dihydro-1,3-thiazole-5-thiols Heating of 5-alkenyl- or 5-alkinyl-4,5-dihydro-1,3-thiazole-5-thiols of type 5 in the presence of a radical initiator gave dithiaspirobicycles in fair-to-excellent yield (Scheme 3). Under analogous conditions, the 4,5-dihydro-4-vinyl-1,3-thiazole-5-thiol 5d underwent a cyclization to give the annellated dithiabicycle 7 (Scheme 4). In this reaction, a minor product 8 was formed by an unknown reaction mechanism. The structure of 8 was established by X-ray crystallography. The starting 1,3-thiazole-5-thiols 5 have been synthesized by carbophilic alkylation of me C?S group of 1,3-thiazole-5(4H)-thiones with Grignard-reagents or alkylcuprates. The thiazolethiones were obtained by the reaction of 3-amino-2H-azirines with thiobenzoic acid followed by sulfurization and cyclization. The 4-benzyl derivative 1b was thermally rearranged via 1,3-benzyl migration to yield the benzyl (1,3-thiazol-5-yl) sulfide 11 (Scheme 5).  相似文献   

20.
1,3-Oxathiolanc Synthesis: Spirocyclic 1,3-Oxathiolanes from the Lewis-Acid-Catalyzed Reaction of Cyclic Trithiocarbonates and Oxiranes The cyclic trithiocarbonates 1.3-dithiolane-2-thione ( 4 ) and 1,3-dithiole-2-thione ( 9 ) in 1,2-dichloroethane and MeCN, respectively, react with alkyl- and phenyl-substituted oxiranes 2 in the presence of Lewis acids to give 1-oxa-4,6,9-trithiaspiro[4.4]nonanes 5 and 6 (Scheme 2) and 1-oxa-4,6,9-trithiaspiro[4.4]non-7-enes 10 and 11 (Scheme 3), respectively. The reactions proceed regioselectively yielding 2-alkyl ( 5 , 10 ) and 3-phenyl derivatives ( 6 , 11 ) as the main products. From the reaction of 4 and 2-phenyloxirane ( 2e ) with TiCl4, 2-phenyl-1,4,6,9-tetrathia-spiro[4.4]nonane ( 7 ) is isolated as a minor product. The molecular structures of 5a , 6e , and 7 are established by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号