首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preparation, 11B, 13C, 1H NMR and Vibrational Spectra of Monoethoxyhydro-closo-dodecaborate(2–), and the Crystal Structure of [(C5H5N)2CH2][B12H11(OC2H5)] By treatment of Na2[B12H12] with dry HF in ethanol Na2[B12H11(OC2H5)] is formed which has been separated by ion exchange chromatography on diethylaminoethyl(DEAE) cellulose from the starting compound and by-products. The X-ray structure determination of [(C5H5N)2CH2][B12H11(OC2H5)] (monoclinic, space group P21/m, a = 9.1906(3), b = 12.6612(8), c = 9.3640(12) Å, β = 112.947(6)°, Z = 2) reveals the complete ordering of the anion sublattice. The 11B nmr spectrum exhibits the characteristic feature (1:5:5:1) of a mono substituted B12 cage with a strong down-field shift of ipso-B at +6.5 ppm. In the 13C nmr spectrum a triplet at 67.9 ppm of the methylene group and a quartet at 19.5 ppm of the methyl group is observed. Correspondingly, the 1H nmr spectrum shows two multiplets at 3.7 and 1.3 as expected for an ethoxy substituent, and a multiplet at 2.1 ppm due to the protons of the boron cluster. The i.r. and Raman spectra exhibit strong CH stretching vibrations between 2 963 and 2 863 cm?1, and in the i.r. spectrum the CO and BO stretching frequencies of the B? O? C bridge are observed at 1 175 and 1 140 cm?1.  相似文献   

2.
The closo‐dodecaborate [B12H12]2? is degraded at room temperature by oxygen in an acidic aqueous solution in the course of several weeks to give B(OH)3. The degradation is induced by Ag2+ ions, generated from Ag+ by the action of H2S2O8. Oxa‐nido‐dodecaborate(1?) is an intermediate anion, that can be separated from the reaction mixture as [NBzlEt3][OB11H12] after five days in a yield of 18 %. The action of FeCl3 on the closo‐undecaborate [B11H11]2? in an aqueous solution gives either [B22H22]2? (by fusion) or nido‐B11H13(OH)? (by protonation and hydration), depending on the concentration of FeCl3. In acetonitrile, however, [B11H11]2? is transformed into [OB11H12]? by Fe3+ and oxygen. The radical anions [B12H12] ˙ ? and [B11H11] ˙ ? are assumed to be the primary products of the oxidation with the one‐electron oxidants Ag2+ and Fe3+, respectively. These radical anions are subsequently transformed into [OB11H12]? by oxygen. The crystal structure analysis shows that the structure of [OB11H12]? is derived from the hypothetical closo‐oxaborane OB12H12 by removal of the B3 vertex, leaving a non‐planar pentagonal aperture with a three‐coordinate O vertex, as predicted by NMR spectra and theory.  相似文献   

3.
Synthesis and Characterization of the Thio- and Seleno- closo -hexaborates and the Crystal Structure of (Ph4P)[B6H5Hfac(SH)] By treatment of [B6H5(SCN)]2– and [B6H5(SeCN)]2– in strong basic medium the chalcogeno-closo-hexaborates [B6H5S]3– and [B6H5Se]3– are formed. An X-ray structure determination has been performed on the doubly protonated compound (Ph4P)[B6H5Hfac(SH)] (triklin, P 1¯, a = 7.436(2), b = 12.850(2), c = 13.0594(12) Å, α = 93.131(8), β = 94.47(3), γ = 90.40(3)°, Z = 2). The 11B NMR spectra exhibit the characteristic pattern of a monosubtituted B6 octahedron with the intensity ratio 1 : 4 : 1. The chemical shifts are systematically dependent on the protonation at a facet of the B6 clusters with Hfac or at the chalcogen atom. Whereas the signals of the equatorial nuclei are nearly at equal positions from –16.0 to –16.9 ppm, the ipso-B atoms absorb in the low field region from –4.7 to –11.7 ppm, and the antipodal-B atoms in the high field from –21.6 to –28.0 ppm. In the IR and Raman spectra the typical B–X and B6-X stretching vibrations are observed from X = S at 1089 and 383, for X = Se at 1076 and 292 cm–1, respectively.  相似文献   

4.
Preparation, 11B NMR, Vibrational Spectra, and Crystal Structure of [(C5H5N)2CH2][1-(O2N)B10H9] By reaction of [B10H10]2? in aqueous acetonitrile with a saturated solution of NO2 in dichloromethane [1-(O2N) · B10H9]2? and [B10H9(NO)B10H9]3? are formed which can be separated by ion exchange chromatography on diethylaminoethyl(DEAE) cellulose from the starting compound. The X-ray structure determination of [(C5H5N)2CH2][1-(O2N)B10H9] (triclinic, space group P1 , a = 7.1530(9), b = 8.3753(8), c = 15.198(2) Å, α = 96.00(1), β = 95.48(1), γ = 95.60(1)°, Z = 2) reveals the coordination of the NO2 group via N with a B1? N distance of 1.535(5) Å and an O2? N? O1 angle of 119.3(3)°. The 11B NMR spectrum exhibits the characteristic feature (1 : 1 : 4 : 4) of an apical monosubstituted B10 cluster with a strong downfield shift of the ipso-B atom at +13.4 ppm. The IR and Raman spectra show strong NO stretching vibrations at 1381 und 1420 cm?1.  相似文献   

5.
Dodecahydro‐ closo ‐dodecaborates of the Heavy Alkaline‐Earth Metals from Aqueous Solution: Ca(H2O)7[B12H12] · H2O, Sr(H2O)8[B12H12], and Ba(H2O)6[B12H12] The crystalline hydrates of the heavy alkaline earth metal dodecahydro‐closo‐dodecaborates (M[B12H12] · n H2O, n = 6–8; M = Ca, Sr, Ba) are easily accessible by reaction of an aqueous (H3O)2[B12H12] solution with an alkaline earth metal carbonate (MCO3). By isothermic evaporation of the respective aqueous solution we obtained colourless single crystals which are characterized by X‐ray diffraction at room temperature. The three compounds Ca(H2O)7[B12H12] · H2O (orthorhombic, P212121; a = 1161.19(7), b = 1229.63(8), c = 1232.24(8) pm; Z = 4), Sr(H2O)8[B12H12] (trigonal, R3; a = 1012.71(6), c = 1462.94(9) pm; Z = 3) and Ba(H2O)6[B12H12] (orthorhombic, Cmcm; a = 1189.26(7) pm, b = 919.23(5) pm, c = 1403.54(9) pm; Z = 4) are neither formula‐equal nor isostructural. The structure of Sr(H2O)8[B12H12] is best described as a NaCl‐type arrangement, Ba(H2O)6[B12H12] rather forms a layer‐like and Ca(H2O)7[B12H12] · H2O a channel‐like structure. In first sphere the alkaline earth metal cations Ca2+ and Sr2+ are coordinated by just seven and eight oxygen atoms from the surrounding water molecules, respectively. A direct coordinative influence of the quasi‐icosahedral [B12H12]2– cluster anions becomes noticeable only for the Ba2+ cations (CN = 12) in Ba(H2O)6[B12H12]. The dehydratation of the alkaline earth metal dodecahydro‐closo‐dodecaborate hydrates has been shown to take place in several steps. Thermal treatment leads to the anhydrous compounds Ca[B12H12], Sr[B12H12] and Ba[B12H12] at 224, 164 and 116 °C, respectively.  相似文献   

6.
Synthesis and Vibrational Spectroscopic Investigation of [H3B? Se? Se? BH3]2? and [H3B-μ2-Se(B2H5)]? Crystal Structure and Theoretical Investigation of the Molecular Structure of [H3B-μ2-Se(B2H5)]? M2[H3B? Se? Se? BH3] 1 is produced by the reaction between elemental selenium and MBH4 (1 : 1) in triglyme (diglyme), under dehydrogenation. 1 reacts with an excess of B2H6 to give M[H3B-μ2-Se(B2H5)] 2 which is also formed in the reaction of THF · BH3 with 1 . These reactions proceed under cleavage of the Se? Se bond and hydrogen evolution. [(C6H5)4]Br reacts with Na · 2 to form [(C6H5)4P] · 2 which crystallizes in the tetragonal space group I4 (Nr. 82). An X-ray structure determination failed because of disordering of the cation and anion. 11B, 77Se NMR shifts and 1J(11B1H) coupling constants as well as IR- and Raman spectroscopic investigations convey further structural information. Structural data of 2 have been calculated by SCF methods. The anion of 2 may be viewed either as an adduct of Se with B3H8?, or as a bridge substituted selena derivative of B2H6.  相似文献   

7.
On the Crystal Structures of the Transition‐Metal(II) Dodecahydro‐closo‐Dodecaborate Hydrates Cu(H2O)5.5[B12H12]·2.5 H2O and Zn(H2O)6[B12H12]·6 H2O By neutralization of an aqueous solution of the free acid (H3O)2[B12H12] with basic copper(II) carbonate or zinc carbonate, blue lath‐shaped single crystals of the octahydrate Cu[B12H12]·8 H2O (≡ Cu(H2O)5.5[B12H12]·2.5 H2O) and colourless face‐rich single crystals of the dodecahydrate Zn[B12H12]·12 H2O (≡ Zn(H2O)6[B12H12]·6 H2O) could be isolated after isothermic evaporation. Copper(II) dodecahydro‐closo‐dodecaborate octahydrate crystallizes at room temperature in the monoclinic system with the non‐centrosymmetric space group Pm (Cu(H2O)5.5[B12H12]·2.5 H2O: a = 768.23(5), b = 1434.48(9), c = 777.31(5) pm, β = 90.894(6)°; Z = 2), whereas zinc dodecahydro‐closo‐dodecaborate dodecahydrate crystallizes cubic in the likewise non‐centrosymmetric space group F23 (Zn(H2O)6[B12H12]·6 H2O: a = 1637.43(9) pm; Z = 8). The crystal structure of Cu(H2O)5.5[B12H12]·2.5 H2O can be described as a monoclinic distortion variant of the CsCl‐type arrangement. As characteristic feature the formation of isolated [Cu2(H2O)11]4+ units as a condensate of two corner‐linked Jahn‐Teller distorted [Cu(H2O)6]2+ octahedra via an oxygen atom of crystal water can be considered. Since “zeolitic” water of hydratation is also present, obviously both classical H–Oδ?···H–O and non‐classical B–Hδ?···H–O hydrogen bonds play a significant role for the stabilization of the structure. A direct coordinative influence of the quasi‐icosahedral [B12H12]2? anions on the Cu2+ cations has not been determined. The zinc compound Zn(H2O)6[B12H12]·6 H2O crystallizes in a NaTl‐type related structure. Two crystallographically different [Zn(H2O)6]2+ octahedra are present, which only differ in their relative orientation within the packing of the [B12H12]2? anions. The stabilization of the crystal structure takes place mainly via H–Oδ?···H–O hydrogen bonds, since again the hydrogen atoms of the [B12H12]2? anions have no direct coordinative influence on the Zn2+ cations.  相似文献   

8.
Preparation and Characterization of Thiocyanate Derivatives of the Hydroborate Anions B10H102? and B12H122? The reaction of B10H102? or B12H122? with (SCN)2 in dichloromethane yields mixtures of thiocyanatohydroborates from which the pure isomers 1-and 2-(SCN)B10H92?, 1, 10-(SCN)2B10H82?, and 1-(SCN)B12H112? are isolated by ion exchange chromatography on diethylaminoethyl cellulose. The structures are determined by 11B and 11B{1H}NMR spectroscopy. There are characteristic chemical shifts due to apical and equatorial substituents, respectively. In B10H102? the substitution at apical positions is prefered. The IR and Raman spectra are similar to those of isosteric halogeno derivatives in the region of ν(BH) and of the borate cages. Because of the high frequencies of ν(CN): 2120–2140 cm?1 S coordination of SCN? is supposed.  相似文献   

9.
Synthesis, Crystal Structure, and Thermal Decomposition of Mg(H2O)6[B12H12] · 6 H2O By reaction of an aqueous solution of the free acid (H3O)2[B12H12] with MgCO3 and subsequent isothermic evaporation of the resulting solution to dryness, colourless, bead‐shaped single crystals of the dodecahydrate of magnesium dodecahydro closo‐dodecaborate Mg(H2O)6[B12H12] · 6 H2O (cubic, F4132; a = 1643.21(9) pm, Z = 8) emerge. The crystal structure is best described as a NaTl‐type arrangement in which the centers of gravity of the quasi‐icosahedral [B12H12]2— anions (d(B—B) = 178—180 pm, d(B—H) = 109 pm) occupy the positions of Tl while the Mg2+ cations occupy the Na+ positions. A direct coordinative influence of the [B12H12]2— units at the Mg2+ cations is however not noticeable. The latter are octahedrally coordinated by six water molecules forming isolated hexaaqua complex cations [Mg(H2O)6]2+ (d(Mg—O) = 206 pm, 6×). In addition, six “zeolitic” water molecules are located in the crystal structure for the formation of a strong O—Hδ+···δ—O‐hydrogen bridge‐bonding system. The evidence of weak B—Hδ—···δ+H—O‐hydrogen bonds between water molecules and anionic [B12H12]2— clusters is also considered. Investigations on the dodecahydrate Mg[B12H12] · 12 H2O (≡ Mg(H2O)6[B12H12] · 6 H2O) by DTA/TG measurements showed that its dehydration takes place in two steps within a temperature range of 71 and 76 °C as well as at 202 °C, respectively. Thermal treatment eventually leads to the anhydrous magnesium dodecahydro closo‐dodecaborate Mg[B12H12].  相似文献   

10.
The perhalogenated closo‐dodecaborate dianions [B12X12]2? (X=H, F, Cl, Br, I) are three‐dimensional counterparts to the two‐dimensional aromatics C6X6 (X=H, F, Cl, Br, I). Whereas oxidation of the parent compounds [B12H12]2? and benzene does not lead to isolable radicals, the perhalogenated analogues can be oxidized by chemical or electrochemical methods to give stable radicals. The chemical oxidation of the closo‐dodecaborate dianions [B12X12]2? with the strong oxidizer AsF5 in liquid sulfur dioxide (lSO2) yielded the corresponding radical anions [B12X12] ? ? (X=F, Cl, Br). The presence of radical ions was proven by EPR and UV/Vis spectroscopy and supported by quantum chemical calculations. Use of an excess amount of the oxidizing agent allowed the synthesis of the neutral perhalogenated hypercloso‐boranes B12X12 (X=Cl, Br). These compounds were characterized by single‐crystal X‐ray diffraction of dark blue B12Cl12 and [Na(SO2)6][B12Br12] ? B12Br12. Sublimation of the crude reaction products that contained B12X12 (X=Cl, Br) resulted in pure dark blue B12Cl12 or decomposition to red B9Br9, respectively. The energetics of the oxidation processes in the gas phase were calculated by DFT methods at the PBE0/def2‐TZVPP level of theory. They revealed the trend of increasing ionization potentials of the [B12X12]2? dianions by going from fluorine to bromine as halogen substituent. The oxidation of all [B12X12]2? dianions was also studied in the gas phase by mass spectrometry in an ion trap. The electrochemical oxidation of the closo‐dodecaborate dianions [B12X12]2? (X=F, Cl, Br, I) by cyclic and Osteryoung square‐wave voltammetry in liquid sulfur dioxide or acetonitrile showed very good agreement with quantum chemical calculations in the gas phase. For [B12X12]2? (X=F, Cl, Br) the first and second oxidation processes are detected. Whereas the first process is quasi‐reversible (with oxidation potentials in the range between +1.68 and +2.29 V (lSO2, versus ferrocene/ferrocenium (Fc0/+))), the second process is irreversible (with oxidation potentials ranging from +2.63 to +2.71 V (lSO2, versus Fc0/+)). [B12I12]2? showed a complex oxidation behavior in cyclic voltammetry experiments, presumably owing to decomposition of the cluster anion under release of iodide, which also explains the failure to isolate the respective radical by chemical oxidation.  相似文献   

11.
Synthesis and Crystal Structure of Cadmium Dodecahydro closo‐Dodecaborate Hexahydrate, Cd(H2O)6[B12H12] Through neutralization of the aqueous free acid (H3O)2[B12H12] with cadmium carbonate (CdCO3) and after isothermic evaporation of the resulting solution, colourless lath‐shaped single crystals of Cd(H2O)6[B12H12] are obtained. Cadmium dodecahydro closo‐dodecaborate hexahydrate crystallizes at room temperature in the monoclinic system (space group: C2/m) with the lattice constants a = 1413.42(9), b = 1439.57(9), c = 749.21(5) pm and β = 97.232(4)° (Z = 4). The crystal structure of Cd(H2O)6[B12H12] can be regarded as a monoclinic distortion variant of the CsCl‐type structure. Two crystallographically different [Cd(H2O)6]2+ octahedra (d(Cd–O) = 227–230 pm) are present which only differ in their relative orientation. The intramolecular bond lengths for the quasi‐icosahedral [B12H12]2? cluster anions range in the intervals usually found for dodecahydro closo‐dodecaborates (d(B–B) = 177–179 pm, d(B–H) = 103–116 pm). The hydrogen atoms of the [B12H12]2? clusters have no direct coordinative influence on the Cd2+ cations. Due to the fact that no “zeolitic” crystal water molecules are present, a stabilization of the lattice takes place mainly via the B–Hδ?···H–O hydrogen bonds.  相似文献   

12.
Structural Investigations on Cs2[B12H12] The crystal structure of Cs2[B12H12] has been determined from X‐ray single‐crystal data collected at room temperature. Dicesium dodecahydro‐closo‐dodecaborate crystallizes as colourless, face‐rich crystals (cubic, Fm 3; a = 1128.12(7) pm; Z = 4). Its synthesis is based on the reaction of Na[BH4] with BF3(O(C2H5)2) via the decomposition of Na[B3H8] in boiling diglyme, followed by subsequent separations, precipitations (with aqueous CsOH solution) and recrystallizations. The crystal structure is best described as anti‐CaF2‐type arrangement with the Cs+ cations in all tetrahedral interstices of the cubic closest‐packed host lattice of the icosahedral [B12H12]2–‐cluster dianions. The intramolecular bond lengths are in the range usually found in closo‐hydroborates: 178 pm for the B–B and 112 pm for the B–H distance. Twelve hydrogen atoms belonging to four [B12H12]2– icosahedra provide an almost perfect cuboctahedral coordination sphere to the Cs+ cations, and their distance of 313 pm (12 ×) attests for the salt‐like character of Cs2[B12H12] according to {(Cs+)2([B12H12]2–)}. The 11B{1H}‐NMR data in aqueous (D2O) solution are δ = –12,70 ppm (1JB–H = 125 Hz), and δ = –15,7 ppm (linewidth: δν1/2 = 295 Hz) for the solid state 11B‐MAS‐NMR.  相似文献   

13.
Reactions of [B12H12–n(OH)n]2–, n = 1, 2 with Acid Dichlorides and Crystal Structure of Cs2[1,2-B12H10(ox)] · CH3OH By treatment of [B12H11(OH)]2– with organic and inorganic acid dichlorides in acetonitrile the bridged dicluster compounds [B12H11(ox)B12H11)]4– ( 1 ), [B12H11(p-OOCC6H4COO)B12H11]4– ( 2 ), [B12H11(m-OOCC6H4COO)B12H11]4– ( 3 ), [B12H11(SO3)B12H11]4– ( 4 ), [B12H11(SO4)B12H11]4– ( 5 ) are obtained in good yields. The dihydroxododecaborates [1,2-B12H10(OH)2]2– and [1,7-B12H10(OH)2]2– afford clusters with an anellated ring: [1,2-B12H10(ox)]2– ( 6 ), [1,2-B12H10(SO4)]2– ( 7 ) and [1,7-B12H10(OOC(CH2)8COO)]2– ( 8 ). Isomerically pure [1,7-B12H10(OH)2]2– ( 9 ) is formed by reaction of (H3O)2[B12H12] with ethylene glycol. All new compounds are characterized by vibrational, 11B, 13C and 1H NMR spectra. The crystal structure of Cs2[1,2-B12H10(ox)] · CH3OH (monoclinic, space group P 21/c, a = 9.616(2), b = 10.817(1), c = 15.875(6) Å, β = 95.84(8)°, Z = 4) reveals a distortion of the B12 icosahedron caused by the anellated six-membered heteroring.  相似文献   

14.
DFT‐calculations of the geometries of the closo‐anion [B11H11]2– in its ground state and in the transition state of its skeletal rearrangement and of the protonated species [B11H12] in its ground state were performed at the B3LYP/6‐31++G(d,p) level. The corresponding NMR shifts were computed on the basis of the optimized geometry by the GIAO method at the same level. Calculated and observed NMR data are in good agreement and thus prove the structure of [B11H12], previously deduced from 2 D‐NMR spectra. The addition of water, ethanol, and pyridine to [B11H12] at low temperature gave the nido‐species [B11H13(OH)], [B11H13(OEt)], and [B11H12(py)], respectively. The structures of these anions were investigated by NMR methods and the last two of them by crystal structure analyses of appropriate salts. The course of the addition reactions can be rationalized on the basis of the structurally characterized reaction components.  相似文献   

15.
The D2h‐symmetric dinuclear complex anion [U2F12]2? of pastel green Sr[U2F12] shows a hitherto unknown structural feature: The coordination polyhedra around the U atoms are edge‐linked monocapped trigonal prisms, the UV atoms are therefore seven‐coordinated. This leads to a U–U distance of 3.8913(6) Å. A weak UV–UV interaction is observed for the dinuclear [U2F12]2? complex and described by the antiferromagnetic exchange Jexp of circa ?29.9 cm?1. The crystalline compound can be easily prepared from SrF2 and β‐UF5 in anhydrous hydrogen fluoride (aHF) at room temperature. It was studied by means of single crystal X‐ray diffraction, IR, Raman and UV/VIS spectroscopy, magnetic measurements, and by molecular as well as by solid‐state quantum chemical calculations.  相似文献   

16.
Preparation and Crystal Structures of Dipyridiniomethane Monohalogenohydro-closo-Dodecaborates(2?), [(C5H5N)2CH2][B12H11X]; X = Cl, Br, I [B12H12]2? reacts with dihalogenomethanes CH2X2 in presence of trifluoro acetic acid, yielding the monohalogenododecaborates [B12H11X]2? (X = Cl, Br, I), which are separated by ion exchange chromatography on diethylaminoethyl(DEAE) cellulose from the starting compound and higher halogenated products. The X-ray structure determinations of [(C5H5N)2CH2][B12H11Cl] · 2(CH3)2SO (orthorhombic, space group Pnma, a = 17.351(6), b = 16.034(5), c = 9.659(2) Å, Z = 4) and of the isotypic bromo and iodo compounds [(C5H5N)2CH2][B12H11X] (monoclinic, space group P21/n, Z = 4; for X = Br: a = 7.339(2), b = 15.275(3), c = 16.761(4) Å, β = 96.80(2)°; for X = I: a = 7.4436(8), b = 15.3510(8), c = 16.9213(16) Å, ß = 97.326(7)°) exhibit crystal lattices build up by columns of substituted boron clusters and angular dications [(C5H5N)2CH2]2+ orientated along the shortest axis which are assembled to alternating layers.  相似文献   

17.
The deprotonation of the nido‐anion [B11H14] by two equivalents of LitBu yields the anion [B11H12]3–. Three observed 11B NMR shifts of this anion in the ratio 1 : 5 : 5 are in agreement with shifts calculated by the GIAO method on the basis of the ab initio computed geometry. The deprotonation can be reversed, giving back [B11H14] via [B11H13]2–. The thermolysis of [Li(thp)x]3[B11H12] in thp at 80 °C leads to the closo‐borate [Li(thp)3]2[B11H11] under elimination of LiH. Anhydrous air transforms [B11H12]3– into the known oxa‐nido‐dodecaborate [OB11H12]. The rhoda‐closo‐dodecaborate [L2RhB11H11]3– is formed from [B11H12]3– and RhL3Cl (L = PPh3).  相似文献   

18.
Chemical and Cyclovoltammetric Investigation of the Redoxreactions of the Decahalodecaborates closo ‐[B10X10]2– and hypercloso ‐[B10X10]· – (X = Cl, Br)1). Crystal Structure Analysis of Cs2[B10Br10] · 2 H2O The oxidation of the decachloro‐closo‐decaborates(2–) Cs2[B10Cl10] or [Me4N]2[B10Cl10] with Tl(CF3COO)3 leads to the corresponding radical monoanion hypercloso‐[B10Cl10] · –, which was characterized by ESR and UV/Vis spectroscopy. [B10Cl10] · – does not dimerize like [B10H10] · – but it is reduced by acetonitrile to the dianion [B10Cl10]2–. Cs2[B10Cl10] reacts with stronger oxidation agents like CoF3 (in dichloromethane) or XeF2 (in perfluorhexane), respectively, to yield B9Cl9 and, in traces, B8Cl8. In opposite to this, the decabromoderivative Cs2[B10Br10] does not show any reaction with Tl(CF3COO)3 in acetonitrile or with CoF3 in CH2Cl2. The oxidation of the dianions [B10X10]2– (X = Cl, Br) was studied by electroanalytical methods (cyclic voltammetry, chronoamperometry, chronocoulometry). Formal potentials were determined for the two steps of the reaction, which do not seem to be affected by structural rearrangements. The crystal structure of Cs2[B10Br10] · 2 H2O was analyzed by single‐crystal X‐ray diffraction. Cs2[B10Br10] · 2 H2O crystallizes monoclinic (space group I2/a, (no. 15), Z = 8, a = 1361.54(9) pm, b = 1215.89(5) pm, c = 3108.4(2) pm, α = 90°, β = 97.916(8)°, γ = 90°). The closo‐cluster B10Br102– has a bicapped square antiprismatic structure with idealized D4d symmetry.  相似文献   

19.
Monomeric and Dimeric Chromium(III) Phthalocyanines: Synthesis and Properties of Hydroxopyridinophthalocyaninatochromium(III) and μ-Oxodi(pyridinophthalocyaninatochromium(III)) Heating of ?[Cr(OH)Pc2?]”? in pyridine (Py) gives the paramagnetic (T = 273 K) complexes [Cr(OH)(Py)Pc2?] (μCr = 3.84 μB) and [(Cr(Py)Pc2?)2O] (μCr = 1.24 μB) by consecutive substitution and condensation reactions. The UV-VIS spectra are characterized by the typical B, Q, and N regions of the Pc2? ligand being shifted hypsochromically for the dimer with respect to the monomer due to excitonic coupling (1.5 kK). Regions of weak absorbance between 8 and 13 resp. 19 kK are assigned to trip-quartet transitions for both complexes. A weak band at 870 cm?1 in the FIR/MIR spectra is assigned to vas(Cr? O? Cr). In the resonance Raman(RR) spectra v(Cr? O) at 514 cm?1 resp. vs(Cr? O? Cr) at 426 cm?1 is selectively enhanced. Further strong RR-lines of the μ-Oxo dimer at 110 and 631 cm?1 are assigned to a (Py? Cr? O)- resp. internal pyridine deformation of a1g symmetry. An assignment as 2vas(Cr? O? Cr) is proposed for the remarkable RR line at 1740 cm?1.  相似文献   

20.
Synthesis and Crystal Structure of [P(C6H5)4][2,9-{N,N′-(2-NH? (C5H4N))}B10H8] [N(C4H9)4]2[B10H10] reacts with 2-aminopyridine forming a product mixture from which [2,9-{N,N′-(2-NH? (C5H4N))}B10H8]? can be isolated by ion exchange chromatography on diethylaminoethyl(DEAE) cellulose. The crystal structure of [P(C6H5)4][2,9-{N,N′-(2-NH? (C5H4N))}B10H8] (triclinic, space group P1 , a = 10.1103(9), b = 11.5665(9), c = 14.877(2) Å, α = 102.600(8), β = 107.567(8) und γ = 96.487(7)°, Z = 2) reveals the bonding of 2-NH2-(C5H4N) via both N atoms to vicinal B atoms of the two square planes of the B10 cluster (B2? N1 = 1,541(7) und B9? N2 = 1.505(7) Å) forming a five-membered ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号