首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The reaction of [Fe3EuO2(O2CCCl3)8(H2O)(THF)3] or [Fe2CaO(O2CCCl3)6(THF)4] and [Fe3O(O2CCMe3)6(H2O)3]NO3 with 1,1′-ferrocenedicarboxylic acid (fcdcH2) yielded penta- and hepta-nuclear [Fe4O2(O2CCCl3)6(fcdc)(THF)2(H2O)2] and [Fe6O2(OH)2(O2CCMe3)10(fcdc)(H2O)2], respectively, which are the first X-ray structurally characterized clusters comprising Fe(III) and the ferrocenedicarboxylic organometallic ligand. Variable-temperature solid-state magnetic susceptibility measurements in the temperature range 1.8–300 K were carried out, and for both complexes a predominantly antiferromagnetic exchange interaction between the metal centres was observed. Mössbauer investigations show the presence of different environments for the Fe(III) atoms and confirm that no electron-transfer from Fe(II) of the ferrocene unit to Fe(III) of the central core occurs.  相似文献   

3.
4.
A new series of polynuclear iron complexes with polydiimine ligand have been prepared from the Schiff-base condensation of pyridine-2, 6-dialdehyde or 2, 6-diacetylpyridine with aliphatic diamines. The structures of the complexes are represented by [?N = CR-Py-CR = N-(CH2)n-]2FeSO4·xH2O; where R = H, CH3; n = 4?10, × = 5~8. Mössbauer spectra and magnetic measurements show several complexes have unusual magnetic properties.  相似文献   

5.
A new series of octahedral iron(II) complexes with the composition Fe(II) (N-R-2-pyridinaldimine)2(NCS)2, where R=cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl, have been synthesized and the spin states of the iron atom have been studied by means of Mössbauer spectroscopy and magnetic measurement.  相似文献   

6.
Spot the difference : The five‐coordinate iron(II) cyanoporphyrinates, which are spin‐crossover compounds, can be used to synthesize previously unknown six‐coordinate complexes. Bis(cyano) and (cyano)imidazole complexes are presented, and the five‐ and six‐coordinate (cyano)iron(II) derivatives are compared with analogous CO complexes.

  相似文献   


7.
8.
Cryogenically trapped FeV nitride complexes with cyclam‐based ligands were found to decay by bimolecular reactions, forming exclusively FeII compounds. Characterization of educts and products by Mössbauer spectroscopy, mass spectrometry, and spectroscopy‐oriented DFT calculations showed that the reaction mechanism is reductive nitride coupling and release of dinitrogen (2 FeV?N→FeII‐N?N‐FeII→2 FeII+N2). The reaction pathways, representing an “inverse” of the Haber–Bosch reaction, were computationally explored in detail, also to judge the feasibility of yielding catalytically competent FeV(N). Implications for the photolytic cleavage of FeIII azides used to generate high‐valent Fe nitrides are discussed.  相似文献   

9.
10.
The iron(IV) oxido complex [(tmc)Fe=O(OTf)]OTf with the macrocyclic ligand 1,4,8,11‐tetramethyl‐1,4,8,11‐tetraazacyclo‐tetradecane (tmc) has been synthesized using ozone as an oxidant. By adding water to this compound the complex [(H2O)(tmc)Fe=O)](OTf)2 could be prepared. This complex is important in regard to a better understanding of the reactivity of FeIV oxido complexes. Mössbauer measurements using the solid compound showed an isomer shift of δ=0.19 mm s?1 and a quadrupole splitting ΔEQ=1.38 mm s?1, confirming the high‐valent FeIV state. DFT calculations were performed and led to an assignment of triplet spin multiplicity. Crystallographic characterization of [(H2O)(tmc)Fe=O)](OTf)2 as well as of starting materials [(tmc)Fe(CH3CN)](OTf)2 and [(tmc)Fe(OTf)]OTf together with previous results strongly suggest that [(H2O)(tmc)Fe=O)](OTf)2 was formed similar to the oxido–hydroxido tautomerism analogous to heme systems.  相似文献   

11.
A series of heteronuclear nickel‐iron complexes [Fe2(CO)6(μ‐SH)(μ3‐S){NiCl(PPh3)2}] ( 1 ), [Fe2(CO)6(μ‐SH)(μ3‐S){NiCl(dppe)}] ( 2 ), [Fe2(CO)63‐S)2{Ni(PPh3)2}] ( 3 ), [Fe2(CO)63‐S)2{Ni(dppe)}] ( 4 ) and [Fe2(CO)6(μ‐SPh)(μ3‐S){NiCl(dppe)}] ( 5 ) have been prepared. The structure of 4 has been determined by X‐ray crystallography. The central metal‐sulfur core of 4 has a trigonal bipyramidal shape with a NiFe2 base plane with two axial sulfur atoms. Each iron atom is 5‐coordinate forming a distorted square pyramid; the nickel is square planar coordinated by two sulfur atoms and two phosphorus atoms.  相似文献   

12.
13.
14.
Fe4Si2Sn7O16: A Combination of FeSn6-Octahedra with Layers of (Fe3Sn)O6-Octahedra; Preparation, Properties, and Crystal Structure Fe4Si2Sn7O16 has been prepared by a solid state reaction at 900 °C from a mixture of Fe2O3, SnO2, Sn, and Si. The compound is a paramagnetic semiconductor. Results of Mössbauer and suszeptibility measurements as well as bond length-bond strength calculations lead to the possible ionic formulation Fe42+Si24+Sn12+Sn14+O162–. The compound crystallizes in the trigonal space group P3m1 (no. 164), with one formula unit per cell. Lattice parameters obtained by powder measurements are: a = 6.8243(6) Å, c = 9.1404(6) Å, γ = 120°, V = 368.6(1) Å3. The structure consists of layers of edge linked oxygen octehedra exactly centered by Sn and Fe in the ratio 1 : 3. Three plains of isolated SiO4 tetrahedra, FeSn6 octahedra and again SiO4 terahedra are inserted between two such layers. The layers are stacked along [001] and linked three-dimensionally by oxygen.  相似文献   

15.
Di- and tri-organotin(IV) derivatives of N -acetyltriglycine and N -benzoyltriglycine (HA) were obtained by refluxing equimolar mixtures of the ligand and the organotin(IV) oxide or hydroxide in methanol or acetone. According to the spectroscopic data, triorganotin(IV) derivatives adopt a trigonal-bipyramidal structure in which the planar R3SnIV unit is bonded by a monodentate carboxylate group and a donor group, presumably the amide CO. The reaction of HA with the appropriate diorganotin(IV) compounds gave both dicarboxylates R2SnA2, with six-coordinated tin, and dimeric tetraorganodistannoxanes {[R2SnA]2O}2, in which the tin atoms are essentially five-coordinated.  相似文献   

16.
A rare, low‐spin FeIV imide complex [(pyrr2py)Fe?NAd] (pyrr2py2?=bis(pyrrolyl)pyridine; Ad=1‐adamantyl) confined to a cis‐divacant octahedral geometry, was prepared by reduction of N3Ad by the FeII precursor [(pyrr2py)Fe(OEt2)]. The imide complex is low‐spin with temperature‐independent paramagnetism. In comparison to an authentic FeIII complex, such as [(pyrr2py)FeCl], the pyrr2py2? ligand is virtually redox innocent.  相似文献   

17.
The binuclear copper(II) and tetranuclear diiron(III)-porphyrin-dicopper(II) complexes with the Schiff-base ligands of N,N′-bis(2-imidazolaldehyde)ethylenediimine, N,N′-bis(2-imidazolaldehyde)-p-phenyldiimine, N,N-bis(acetylpyrazine)-ethylenediimine and N,N′-bis(acetylpyrazine)-p-phenyldiimine have been prepared and characterized. The magnetic data indicated that the spin ground states and the magneic interaction between Cu(II)-Cu(II) or Fe(III)-Cu(II) are dependent on the nature of the bridging ligands. A weak antiferromagnetic interaction between Fe(III) and Cu(II) is evident from the temperature-dependent magnetic measurements. The Mössbauer spectra of iron(III) -porphyrin sites showed an asymmetric quadrupole doublet consistent with high-spin iron(III) S = 5/2.  相似文献   

18.
Using the method to synthesize rare-earth metal(III) fluoride sulfides MFS (M=Y, La, Ce–Lu), in some cases we were able to obtain mixed-valent compounds such as Yb3F4S2 instead. With Eu3F4S2 another isotypic representative has now been synthesized. Eu3F4S2 (tetragonal, I4/mmm, a=400.34(2), c=1928.17(9) pm, Z=2) is obtained from the reaction of metallic europium, elemental sulfur, and europium trifluoride in a molar ratio of 5:6:4 within seven days at 850 °C in silica-jacketed gas-tightly sealed platinum ampoules. The single-phase product consists of black plate-shaped single crystals with a square cross section, which can be obtained from a flux using equimolar amounts of NaCl as fluxing agent. The crystal structure is best described as an intergrowth structure, in which one layer of CaF2-type EuF2 is followed by two layers of PbFCl-type EuFS when sheeted parallel to the (001) plane. Accordingly there are two chemically and crystallographically different europium cations present. One of them (Eu2+) is coordinated by eight fluoride anions in a cubic fashion, the other one (Eu3+) exhibits a monocapped square antiprismatic coordination sphere with four F and five S2− anions. Although the structural ordering of the different charged europium cations is plausible, a certain amount of charge delocalization with some polaron activity has to take place, which is suggested by the black color of the title compound. Temperature dependent magnetic susceptibility measurements of Eu3F4S2 show Curie–Weiss behavior with an experimental magnetic moment of 8.19(5) μB per formula unit and a paramagnetic Curie temperature of 0.3(2) K. No magnetic ordering is observed down to 4.2 K. In accordance with an ionic formula splitting like (EuII)(EuIII)2F4S2 only one third of the europium centers in Eu3F4S2 carry permanent magnetic moments. 151Eu-Mössbauer spectroscopic experiments at 4.2 K show one signal at an isomer shift of −12.4(1) mm/s and a second one at 0.42(4) mm/s. These signals occur in a ratio of 1:2 and correspond to Eu2+ and Eu3+, respectively. The spectra at 78 and 298 K are similar, thus no change in the Eu2+/Eu3+ fraction can be detected.  相似文献   

19.
20.
The two new compounds [Fe(tren)]FeSbS4 ( 1 ) (tren = tris(2‐aminoethyl)amine) and [Fe(dien)2]Fe2Sb4S10 ( 2 ) (dien = diethylendiamine) were prepared under solvothermal conditions and represent the first thioantimonates(III) with iron cations integrated into the anionic network. In both compounds Fe3+ is part of a [2FeIII‐2S] cluster which is often found in ferredoxines. In addition, Fe2+ ions are present which are surrounded by the organic ligands. In ( 1 ) the Fe2+ ion is also part of the thioantimonate(III) network whereas in ( 2 ) the Fe2+ ion is isolated. In both compounds the primary SbS3 units are interconnected into one‐dimensional chains. The mixed‐valent character of [Fe(tren)]FeSbS4 was unambiguously determined with Mössbauer spectroscopy. Both compounds exhibit paramagnetic behaviour and for ( 1 ) a deviation from linearity is observed due to a strong zero‐field splitting. Both compounds decompose in one single step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号