首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of Mono- and Bis(silyl)hydroxylamines Silylamines reacts with hydroxylaminehydrochlorid to give the monosilylhydroxylamines: R2FSiONH2 (R = CMe3 1 ), R2R′SiONH2 (R = CMe3, R′ = Me 2 ), R2(NH2)SiONH2 (R = CMe3 3 ). The reaction of 1 in the present of HCl-acceptors or the reaction of lithiated 1 with Me3SiCl or F2Si(CMe3)2 leads to the formation of bis(silyl)hydroxylamines, (Me3C)2FSiONHSiMe3 4 , and (Me3C)2FSiONHSiF(CMe3)2 5 . The lithium derivatives of Me3SiONH2 and 2 react with fluorosilanes to the bis(silyl)hydroxylamines: Me3SiONHSiFRR′ (R = R′ = CMe3, 6 , R = CMe3, R′ = F 7 , R = R′ = NMeSiMe3 8 ), (Me3C)2MeSiNHOSiFRR′ (R = CMe3, R′ = F 9 , R = (Me3C)3C6H2, R′ = F 10 , R = R′ = CMe3 11 , R = R′ = CHMe2 12 ). The bis(silyl)hydroxylamines 4 and 6 are structure isomers.  相似文献   

2.
Triorganoantimony and Triorganobismuth Disulfonates. Crystal and Molecular Structure of (C6H5)3M(O3SC6H5)2(M = Sb, Bi) Triorganoantimony disulfonates R3Sb(O3SR′)2 [R = CH3 = Me, C6H5 = Ph; R′ = Me, CH2CH2OH, Ph, 4-CH3C6H4. R = Ph; R′ = 2,4-(NO2)2C6H3], Me3Sb(O3SCF3)2 · 2 H2O and triphenylbismuth disulfonates Ph3Bi(O3SR′)2 [R = Me, CF3, CH2CH2OH, Ph, 4-CH3C6H4, 2,4-(NO2)2C6H3] have been prepared by reaction of Me3Sb(OH)2, (Ph3SbO)2, and Ph3BiCO3, respectively, with the appropriate sulfonic acids. From vibrational data an ionic structure is inferred for Me3Sb(O3SCF3)2 · 2 H2O and Me3Sb(O3SCH2CH2OH)2, and a covalent structure for the other compounds with a penta-coordinated central atom with trigonal bipyramidal surrounding (Ph or Me in equatorial, unidentate sulfonate ligands in apical positions). Ph3M(O3SPh)2 (M = Sb, Bi) crystallize monoclinic [space group P21/c; M = Sb/Bi: a = 1 611.5(8)/1 557.4(9), b = 987.5(6)/1 072,5(8), c = 1 859.9(9)/1 696.5(9) pm, β = 105.71(5)/96.62(5)°; Z = 4; d(calc.) 1.556/1.781 Mg · m?3; Vcell = 2 849.2 · 106/2 814.8 · 106 pm3; structure determination from 3 438/3 078 independent reflexions (I ≥ 3σ(I)), R(unweighted) = 0.030/0.029]. M is bonding to three Ph groups in the equational plane [mean distances Sb/Bi? C:210.1(4)/219.1(7) pm] and two sulfonate ligands with O in apical positions [distances Sb? O: 210.6(3), 212.8(2); Bi? O: 227.6(5), 228.0(4) pm]. Weak interaction of M with a second O atom of one sulfonate ligand is inferred from a rather short M? O contact distance [Sb? O: 327.4(4), Bi? O: 312.9(5) pm], and from the distortion of equatorial angles [C? Sb? C: 128.4(2), 119.2(2), 112.2(2); C? Bi? C: 135.9(3), 117.8(3), 106.3(3)°]  相似文献   

3.
[CpR(OC)Mo(μ‐η2:2‐P2)2FeCpR′] as Educt for Heterobimetallic Dinuclear Clusters with P2 and CnRnP4‐n Ligands (n = 1, 2) The cothermolysis of [CpR(OC)Mo(μ‐η2:2‐P2)2FeCpR′] ( 1 ) and tBuC≡P ( 2 ) as well as PhC≡CPh ( 3 ) affords the heterobimetallic triple‐decker like dinuclear clusters [(Cp'''Mo)(Cp*′Fe)(P3CtBu)(P2)] ( 4 ), Cp''' = C5H2tBu3‐1,2,4, Cp*′ = C5Me4Et, and [(Cp*Mo)(Cp*Fe)(P2C2Ph2)(P2)] ( 5 ) with a bridging tri‐ and diphosphabutadiendiyl ligand. 4 and 5 have been characterized additionally by X‐ray crystallography.  相似文献   

4.
Synthesis and Crystal Structures of NH4[Si(NH3)F5] and [Si(NH3)2F4] Single crystals of NH4[Si(NH3)F5] and [Si(NH3)2F4] are obtained by reaction of silicon powder with NH4HF2 in sealed Monel ampoules at 400°C. NH4[Si(NH3)F5] crystallizes with the tetragonal space group P4/n (no. 85) with a = 614.91(7) pm, c = 721.01(8) pm, Z = 2. Characteristic for the structure is the anionic octahedron [Si(NH3)F5]?. Si(NH3)2F4 crystallizes with the monoclinic space group P21/c (no. 14) with a = 506.9(1) pm, b = 728.0(1) pm, c = 675.9(1), β = 93,21(2)°, Z = 2. Trans-[Si(NH3)2F4] molecules are characteristic for this structure.  相似文献   

5.
Inhaltsübersicht. Triorganoantimon- und Triorganobismutdicarboxylate R3M[O2C(CH2)n-2-C4H3X]2 (M = Sb, R = CH3, C6H11, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4; n = 0, X = O, S, NH, NCH3. M = Sb, R = CH3, C6H5; M = Bi, R = C6H5; n = 1, X = O, S. M = Sb, R = C6H11, n = 1, X = S; R = 4-FC6H4, n = 0, X = O, S, NCH3; R = 2,4,6-(CH3)3C6H2, n = 0, X = O, S, NH) wurden durch Reaktionen von R3Sb(OH)2 (R = CH3, C6H11, 2,4,6-(CH3)3C6H2), R3SbO (R = C6H5, 4-CH3OC6H4, 4-FC6H4) bzw. R3BiCO3 mit den entsprechenden fünfgliedrigen heterocyclischen Carbonsäuren 2-C4H3X(CH2)nCOOH dargestellt. Auf der Basis schwingungsspektroskopischer Daten wird für alle Verbindungen eine trigonal bipyramidale Umgebung vom M (zwei O-Atome von einzähnigen Carboxylatliganden in den apikalen, drei C-Atome von R in den äquatorialen Positionen) vorgeschlagen, ferner eine schwache Wechselwirkung zwischen O(=C) jeder Carboxylatgruppe und M. Die Kristallstrukturbestimmung von (C6H5)3Sb(O2C–2-C4H3S)3 stützt diesen Vorschlag. Die Verbindung kristallisiert triklin [Raumgruppe P$1; a = 891,8(14), b = 1058,2(12), c = 1435,6(9) pm, α = 68,53(8), β = 85,47(9), γ = 85,99(11)°; Z = 2; d(ber.) = 1,607 Mg m–3; V(Zelle) = 1255,6 Å3; Strukturbestimmung anhand von 3947 unabhängigen Reflexen (Fo > 3σ(F2o)), R(ungewichtet) = 0,037]. Sb bindet drei C6H5-Gruppen in der äquatorialen Ebene [mittlerer Abstand Sb–C: 211,1(5)pm] und zwei einzähnige Carboxylatliganden in den apikalen Positionen einer verzerrten trigonalen Bipyramide [mittlerer Abstand Sb–O: 212,0(4) pm]. Aus den relativ kurzen Sb – O(=C)-Abständen [274,4(4) und 294,9(4) pm] und aus der Aufweitung des dem O(=C)-Atom nächsten äquatorialen C–Sb–C-Winkels auf 145,9(2)° [andere C-Sb-C-Winkel: 104,4(2), 109,5(2)°] wird auf schwache Sb–O(=C)-Koordination geschlossen. Schließlich wird eine Korrelation zwischen dem (+, –)I-Effekt des Organoliganden R an M (M = Sb, Bi) und der Stärke der M–O(=C)-Koordination in den Dicarboxylaten R3M[O2C(CH2)n–2-C4H3X]2 vorgeschlagen. Triorganoanümony and Triorganobismuth Derivatives of Carbonic Acids of Five-membered Heterocycles. Crystal and Molecular Structure of (C6H5)3Sb(O2C–2-C4H3S)2 Triorganoantimony- and triorganobismuth dicarboxylates R3M[O2C(CH2)n–2-C4H3X]2 (M = Sb, R = CH3, C6H11, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4; n = 0, X = O, S, NH, NCH3. M = Sb, R = CH3, C6H5; M = Bi, R = C6H5; n = 1, X = O, S. M = Sb, R = C6H11, n = 1, X = S; R = 4-FC6H4, n = 0, X = O, S, NCH3; R = 2,4,6-(CH3)3C6H2, n = 0, X = O, S, NH) have been prepared by reaction of R3Sb(OH)2 (R = CH3, C6H11; 2,4,6-(CH3)3C6H2), R3SbO (R = C6H5, 4-CH3OC6H4, 4-FC6H4) or R3BiCO3 with the appropriate five-membered heterocyclic carboxylic acid. From vibrational data for all compounds a trigonal bipyramidal environment around M (two O atoms of unidendate carboxylate ligands in apical, three C atoms (of R) in equatorial positions) is proposed and also an additional weak interaction of O(=C) of each carboxylate group and M. The crystal structure determination of Ph3Sb(O2C–2-C4H3S)2 gives additional prove to this proposal. It crystallizes triclinic [space group P$1; a = 891.8(14), b = 1058.2(12), c = 1435.6(9) pm, α = 68.53(8), β = 85.47(9), γ = 85.99(11)°; Z = 2; d(calc.) = 1.607 Mg m–3; Vcell = 1255.6 Å3; structure determination from 3 947 independent reflexions (Fo > 3σ(F2o)), R(unweighted) = 0.037]. Sb is bonding to three C6H5 groups in the equatorial plane [mean distance Sb–C: 211.1(5) pm] and two unidentate carboxylate ligands in the apical positions of a distorted trigonal bipyramid [mean distance Sb–O: 212.0(4) pm]. From the relatively short Sb–O(=C) distances [274.4(4) and 294.9(4) pm] and from the enlarged value of the equatorial C–Sb–C angle next to the O(=C) atom [145.9(2)°; other C–Sb–C angles: 104.4(2), 109.5(2)°] additional weak Sb–O(=C) coordination is inferred. Finally a correlation between the (+, –) I-effect of the organic ligands It at M and the strength of the M–O = C interaction is suggested.  相似文献   

6.
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. VII. Formation and Structure of [Li(DME)3]2{(SiMe3)[Cr(CO)5]2 P-P ? P-P[Cr(CO)5]2(SiMe3)} Deep red crystals of the title compound 1 are produced in the reaction of LiP(Me3Si)2[Cr(CO)5] with 1, 2-dibromoethane in DME. The structure of 1 was derived from the investigation of the 31P-NMR spectra and confirmed by a single crystal structure determination. 1 crystallizes in the space group P1 (no. 2); a = 1307.8(5)pm, b = 1373.1(5)pm, c = 1236.1(4)pm, α = 106.22(4)°, β = 88.00(3)°, γ = 115.52(4)° and Z = 1. 1 forms a salt composed of a dianion R2R4′P42? (R ? SiMe3, R′ ? Cr(CO)5) and solvated Li+ cations. The zigzag shaped dianion possesses the symmetry 1 -Ci. The distances d(P? P) = 202.5(1)pm and d(P? P) = 221.9(1)pm correspond to a double bond and single bonds, respectively. The distances d(Cr? P) = 251.1(1) pm and 255.3(1) pm are larger than those observed so far which might be caused by the charge distribution in the dianion.  相似文献   

7.
LiLa2F3(SO4)2 and LiEr2F3(SO4)2: Fluoride‐Sulfates of the Rare‐Earth Elements with Lithium The reaction of LiF with the anhydrous sulfates M2(SO4)3 (M = La, Er) in sealed gold ampoules yields single crystals of the pseudo quaternary compounds LiLa2F3(SO4)2 and LiEr2F3(SO4)2. According to X‐ray single crystal investigations, LiLa2F3(SO4)2 crystallizes with the monoclinic (I2/a, Z = 4, a = 828.3(2), b = 694.7(1), c = 1420.9(3) pm, β = 95.30(2)°, Rall = 0.0214) and LiEr2F3(SO4)2 with the orthorhombic crystal system (Pbcn, a = 1479.1(2), b = 633.6(1), c = 813.7(1) pm, Rall = 0.0229). A common feature of both structures is a dimeric unit of metal atoms connected via three fluoride ions. This leads to relatively short metal‐metal distances (La3+–La3+: 389 pm, Er3+–Er3+: 355 pm). In LiLa2F3(SO4)2, Li+ is surrounded by four oxygen atoms of four sulfate groups and one fluoride ion in form of a trigonal bipyramid, in LiEr2F3(SO4)2 two further fluoride ligands are attached.  相似文献   

8.
Tetramethylaluminato/halogenido(X) ligand exchange reactions in half-sandwich complexes [CpRLa(AlMe4)2] are feasible in non-coordinating solvents and provide access to large coordination clusters of the type [CpRLaX2]x. Incomplete exchange reactions generate the hexalanthanum clusters [CpR6La6X8(AlMe4)4] (CpR=Cp*=C5Me5, X=I; CpR=Cp′=C5H4SiMe3, X=Br, I). Treatment of [Cp*La(AlMe4)2] with two equivalents Me3SiI gave the nonalanthanum cluster [Cp*LaI2]9, while the exhaustive reaction of [Cp′La(AlMe4)2] with the halogenido transfer reagents Me3GeX and Me3SiX (X=I, Br, Cl) produced a series of monocyclopentadienyl rare-earth-metal clusters with distinct nuclearity. Depending on the halogenido ion size the homometallic clusters [Cp′LaCl2]10 and [Cp′LaX2]12 (X=Br, I) could be isolated, whereas different crystallization techniques led to the aggregation of clusters of distinct structural motifs, including the desilylated cyclopentadienyl-bridged cluster [(μ-Cp)2Cp′8La8I14] and the heteroaluminato derivative [Cp′10La10Br18(AlBr2Me2)2]. The use of the Cp′ ancillary ligand facilitates cluster characterization by means of NMR spectroscopy.  相似文献   

9.
The reaction of the photochemically-generated tetrahydrofuran complexes Cp′(CO)2M(thf) (Cp′  η5-C5H5, η5-C5H4Me, η5-C5Me5; M  Mn, Re) with various alkynes R1C2R2 (R1, R2  H, Me, Ph) yields are acetylene complexes Cp′(CO)2MR1C2R2. These compounds were identified from their IR, 1H NMR, 13C NMR and mas spectra.  相似文献   

10.
Metal Complexes of Phenylenebistriazenides: Synthesis and Crystal Structures of [Cp(CO)2M]2(1,2-PhN3C6H4N3Ph) (M = Mo, W) [Cp(CO)2M]2(1,2-PhN3C6H4N3Ph) [(M = Mo( 1 ), M = W( 2 )] is formed in the reaction of Cp(CO)3MCl with PhN3(H)C6H4N3(H)Ph and C2H5ONa in a THF/ethanol mixture. 1 crystallizes from toluene as dark red crystals (triclinic, P1 , a = 1 499.3(9) pm, b = 1 734.0(7) pm, c = 1 852.8(8) pm, α = 66.84(3)°, β = 78.25(4)°, γ = 77.19(4)°). The unit cell contains four complexes with two independent complexes in the asymmetric unit, and eight solvent molecules. 2 crystallizes from THF as yellow crystals free from solvent molecules (triclinic, P1 , a = 979.0(5) pm, b = 1 152.8(5) pm, c = 1 475.8(5) pm, α = 98.26(4)°, β = 104.93(4)°, γ = 101.03(4)°, Z = 2). 1 and 2 are discrete molecular complexes with a 1,2-bis(phenyltriazenido)phenylligand, (PhN3C6H4N3Ph)2?, chelating the metal atoms of two Cp(CO)2M units with the N atoms N1 and N3 of both N3 groups. Due to the sterical pretension of the Cp(CO)2M units the phenylenebistriazenido ligand deviates strongly from planarity that is found in the metal complexes characterized so far.  相似文献   

11.
Chloroberyllates with Nitrogen Donor Ligands. Crystal Structures of (Ph4P)[BeCl3(py)], (Ph4P)2[(BeCl3)2(tmeda)], (Ph4P)[BeCl2{(Me3SiN)2CPh}], and (Ph4P)2[BeCl4] · 2CH2Cl2 The title compounds were obtained as colourless, moisture sensitive crystals by reactions of (Ph4P)2[Be2Cl6] with pyridine, tmeda (N, N′‐tetramethylethylendiamine), or with the silylated benzamidine PhC—[N(SiMe3)2(NSiMe3)], whereas the tetrachloro beryllate was isolated as a by‐product from a solution in dichloromethane in the presence of the silylated phosphaneimine Me3SiNP(tol)3. All compounds were characterized by crystal structure determinations and by IR spectroscopy. (Ph4P)[BeCl3(Py)] ( 1 ): Space group Pbcm, Z = 4, lattice dimensions at 193 K: a = 756.2(1), b = 1739.2(2), c = 2016.3(2) pm, R1 = 0.0626. The complex anion contains tetrahedrally coordinated beryllium atom with a Be—N distance of 176.5 pm. (Ph4P)2[(BeCl3)2(tmeda)]·2CH2Cl2 ( 2 ·2CH2Cl2). Space group P1¯, Z = 1, lattice dimensions at 193 K: a = 1072.7(1), b = 1132.6(1), c = 1248.9(1) pm, α = 95.34(1)°, β = 92.80(1)°, γ = 90.81(1)°, R1 = 0.0344. Both nitrogen atoms of the tmeda molecule coordinate with BeCl3 units forming the centrosymmetric complex anion with Be—N distances of 181.3 pm. (PPh4)[BeCl2{(Me3SiN)2CPh}] ( 3 ). Space group C2, Z = 2, lattice dimensions at 193 K: a = 1255.4(2), b = 1401.9(2), c = 1085.2(2) pm, R1 = 0.0288. In the complex anion the benzamidinato ligand {(Me3SiN)2CPh} acts as chelate with Be—N distances of 174.9 pm. (Ph4P)2[BeCl4]·2CH2Cl2 ( 4 ·2CH2Cl2). Space group P2/c, Z = 4, lattice dimensions at 193 K: a = 2295.4(1), b = 982.5(1), c = 2197.2(2) pm, β = 99.19(1)°, R1 = 0.0586. 4 ·2CH2Cl2 contains nearly ideal tetrahedral [BeCl4]2— ions, like the previously described 4 ·2, 5CH2Cl2, which crystallizes in the space group P1¯, with Be—Cl distances of 203.4 pm on average.  相似文献   

12.
Unexpected Reduction of [Cp*TaCl4(PH2R)] (R = But, Cy, Ad, Ph, 2,4,6‐Me3C6H2; Cp* = C5Me5) by Reaction with DBU – Molecular Structure of [(DBU)H][Cp*TaCl4] (DBU = 1,8‐diazabicyclo[5.4.0]undec‐7‐ene) [Cp*TaCl4(PH2R)] (R = But, Cy, Ad, Ph, 2,4,6‐Me3C6H2 (Mes); Cp* = C5Me5) react with DBU in an internal redox reaction with formation of [(DBU)H][Cp*TaCl4] ( 1 ) (DBU = 1,8‐diazabicyclo[5.4.0]undec‐7‐ene) and the corresponding diphosphane (P2H2R2) or decomposition products thereof. 1 was characterised spectroscopically and by crystal structure determination. In the solid state, hydrogen bonding between the (DBU)H cation and one chloro ligand of the anion is observed.  相似文献   

13.
Mono- and Dinuclear Fluoro Complexes of Titanium (III), Chromium (III), and Iron(III). Syntheses and Structures of (NMe4) (Ti(H2O)4F2)TiF6 · H2O, (NMe4)3Cr2F9, and (NMe4)3Fe2F9 The title compounds have been prepared by reaction of MCl3 (M = Ti, Cr, Fe) with NMe4F in dimethylformamide. (NMe4)3Cr2F9 and (NMe4)3Fe2F9 contain the face-sharing biocathedral M2F93? unit. The M…M distances are 277.1(1) and 289.8(3) pm in (NMe4)3Cr2F9 and (NMe4)Fe2F9, respectively. (NMe4)(Ti(H2O)4F2)TiF6 · H2O contains trans-TiIII(H2O)4F2+ cations and TiIVF62? anions. Crystal data: (NMe4)3Cr2F9: hexagonal, space group P63/m, a = 804.1(3), c = 1857.5(4) pm, Z = 2, 529 reflections, R = 0.049; (NMe4)3Fe2F9: hexagonal, space group P63/m, a = 804.7(5), c = 1 861.6(5) pm, Z = 2, 635 reflections, R = 0,046; (NMe4)(Ti(H2O)4F2)TiF6 · H2O: orthorhombic, space group Pbca, a = 776.9(2), b = 1 616.3(3), c = 2 428.6(7) pm, Z = 8, 2 784 reflections, R = 0,056.  相似文献   

14.
New 1,1′-Ferrocene Dichalcogenato Complexes of Ruthenium and Osmium Both trinuclear 1,1′-ferrocene dichalcogenato complexes(1) such as fc(E[MLn])2 ( 1a—c ) (with [MLn] = Ru(CO)2Cp*; E = S, Se, Te) and dinuclear [3]ferrocenophane derivatives of the type fcE2[MLn] (with [MLn] = Ru(CO)(η6-C6Me6) ( 2a, b ), Ru(NO)Cp* ( 3a, b ) (E = S, Se) or Os(NO)Cp* ( 4a—c ) (E = S, Se, Te)) were synthesized and characterized by their IR-, 1H- and 13C NMR spectra as well as their mass spectra. The molecular structure of fcS2[Os(NO)Cp*] ( 4a ) was determined by an X-Ray structure analysis; the long Fe…?Os distance of 431.1(1)pm excludes any direct bonding interactions.  相似文献   

15.
Syntheses and Crystal Structures of Y(HSO4)3-I and Y(HSO4)3 · H2O Lath shaped crystals of Y(HSO4)-I are obtained by treatment of Y2O3 with conc. sulfuric acid at 200 °C. Y(HSO4)3-I crystallizes orthorhombic (Pbca, Z = 8, a = 1201.5(1), b = 953.76(8), c = 1650.4(1) pm, Rall = 0.0388). In the crystal structure Y3+ is coordinated by eight monodentate HSO4 groups. Colorless, plate like single crystals of Y(HSO4)3 · H2O grew from a solution of Y2O3 in 85% sulfuric acid upon cooling. In the crystal structure of the triclinic compound (P1, Z = 2, a = 679.8(1), b = 802.8(2), c = 965.9(2) pm, α = 79.99(2)°, β = 77.32(2)°, γ = 77.50(2)°, Rall = 0.0264) Y3+ is surrounded by seven HSO4 groups and one molecule of water.  相似文献   

16.
Crystal Structure of the Mixed-Valence Iron Fluorid Hydrate Fe3F8 · 2 H2O Newly prepared was the red, monoclinic compound Fe3F8 · 2 H2O, single crystals of which could be obtained under hydrothermal high pressure conditions (space group C2/m with a = 761.2(3), b = 750.0(1), c = 746.9(3) pm, β = 118.38(2)° and Z = 2). The X-ray structure determination (RG = 0.0192 and 635 reflexions) yielded a framework structure, in which layers of octahedra 2[FeIIIF6/2] are connected via corners of [FeIIF4/2(H2O)2]-octahedra. The average distances in the nearly ideal octahedra are FeIII? F = 193.0, FeII? F = 208.1 and FeII? OH2 = 211.5 pm.  相似文献   

17.
Preparation and Structure of Tetrafluoro(η5-pentamethylcyclopentadienyl) Niobium and Tetrafluoro(η5-cyclopentadienyl) Niobium A facile preparation method for (η5-C5Me5)NbF4 3 and (η5-C5H5)NbF4 4 is reported by using AsF3 as a fluorinating agent. Single crystals obtained from AsF3 contain the solvent molecule as well as HF. The composition of the crystal is [(η5-C5Me5)NbF4(AsF3)2]2 · [(η5-C5Me5)NbF4(HF)AsF3]2 5 . The X-ray crystal structure of 5 will be reported. 5 crystallizes triclinic with one furmula in the space group P1 and lattice constants a = 843.1(4), b = 1154.9(6), c = 1910.2(10) pm, α = 91.68(3)°, β = 99.30(3)°, γ = 104.44(2)°.  相似文献   

18.
On the Reactivity of Titanocene Complexes [Ti(Cp′)22‐Me3SiC≡CSiMe3)] (Cp′ = Cp, Cp*) towards Benzenedicarboxylic Acids Titanocene complexes [Ti(Cp′)2(BTMSA)] ( 1a , Cp′ = Cp = η5‐C5H5; 1b , Cp′ = Cp* = η5‐C5Me5; BTMSA = Me3SiC≡CSiMe3) were found to react with iodine and methyl iodide yielding [Ti(Cp′)2(μ‐I)2] ( 2a / b ; a refers to Cp′ = Cp and b to Cp′ = Cp*), [Ti(Cp′)2I2] ( 3a / b ) and [Ti(Cp′)2(Me)I] ( 4a / b ), respectively. In contrast to 2a , complex 2b proved to be highly moisture sensitive yielding with cleavage of HCp* [{Ti(Cp*)I}2(μ‐O)] ( 7 ). The corresponding reactions of 1a / b with p‐cresol and thiophenol resulted in the formation of [Ti(Cp′)2{O(p‐Tol)}2] ( 5a / b ) and [Ti(Cp′)2(SPh)2] ( 6a / b ), respectively. Reactions of 1a and 1b with 1,n‐benzenedicarboxylic acids (n = 2–4) resulted in the formation of dinuclear titanium(III) complexes of the type [{Ti(Cp′)2}2{μ‐1,n‐(O2C)2C6H4}] (n = 2, 8a / b ; n = 3, 9a / b ; n = 4, 10a / b ). All complexes were fully characterized analytically and spectroscopically. Furthermore, complexes 7 , 8b , 9a ·THF, 10a / b were also be characterized by single‐crystal X‐ray diffraction analyses.  相似文献   

19.
Synthesis, Structure, and Magnetic Properties of Compounds NaMIIZr2F11 (MII = Ti, V, Cu) and a Notice on NaPdZr2F11 By synthesizing NaTiZr2F11 in form of red single crystals, it was possible to obtain a complex fluoride with Ti2+ for the first time. It crystallizes like the analogous greenish blue vanadium compound isotypic to AgPdZr2F11 [1] monoclinic, spacegroup C2/m–C (No. 12) with a = 918.0/911.5 pm, b = 682.6/675.7 pm, c = 780.8/776.6 pm, β = 116.2/116.2º and Z = 2. Colourless NaCuZr2F11 however crystallizes as a result of the Jahn-Teller distortion of Cu2+ triclinic (space group P1 –C (No. 2), a = 552.7 pm, b = 568.2 pm, c = 768.0 pm, α = 111.0º, β = 97.4º, γ = 106.4º) and is – as expected – isotypic to NaAgZr2F11 [1].  相似文献   

20.
Studies on Polyhalides. 30 On Decamethylferriciniumpolyiodides [(Me5C5)2Fe]Ix with x = 3, 5, 6.5: Preparation and Crystal Structures of a Triiodide (DMFc)I3, a Pentaiodide (DMFc)I5 and a Hexacosaiodide (DMFc)4I26 Decamethylferrocene (DMFc) may be oxidized by iodine analogous to ferrocene (Fc) to the decamethylferrocenium ion (DMFc)+ and precipitated as the crystalline solids decamethylferrocenium triiodide (DMFc)I3, decamethylferrocenium pentaiodide (DMFc)I5 and tetracisdecamethylferrocenium hexacosaiodide (DMFc)4I26. The two compounds with higher iodine content are new. These are characterized by X-ray diffraction methods on single crystals. The structures are built up from complex cations of expected geometry and isolated or remarkably connected polyiodide ions. Decamethylferrocenium triiodide C20H30FeI3 crystallizes monoclinically in C2/m with a = 1489.9(4) pm, b = 1133.0(2) pm, c = 765.9(3) pm, β = 111.76(3)° and Z = 2. The crystal structure follows the CsCl-type and contains isolated triiodide ions of the linear symmetric form. Decamethylferrocenium pentaiodide C20H30FeI5 crystallizes monoclinically in P21/c with a = 1130.0(2) pm, b = 1442.6(1) pm, c = 1716.6(2) pm, β = 96.62(1)° and Z = 4. The crystal structure may be deduced from the primitiv quadratic bundle of alternating cationic and anionic rods. It contains exceptionally isolated somewhat opened out pentaiodide ions. Tetrakisdecamethylferrocenium hexacosaiodide (C20H30Fe)4I26 crystallises monoclinically in P21/n with a = 1331.3(8) pm, b = 1319.4(4) pm, c = 3564(2) pm, β = 90.84(5)° and Z = 2. The crystal structure of this compound with unusual composition may be described as an inclusion compound with channels for the cations. The outstanding anionic grating may be derived from the primitive cubic lattice of iodide ions with iodine bridges on all edges by removing systematically 1/12 of the iodine molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号