首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The modulation of protein uptake and activity in response to physiological changes forms an integral part of smart protein therapeutics. We describe herein the self‐assembly of a pH‐responsive dendrimer shell onto the surface of active enzymes (trypsin, papain, DNase I) as a supramolecular protecting group to form a hybrid dendrimer–enzyme complex. The attachment is based on the interaction between boronic acid and salicyl hydroxamate, thus allowing the macromolecular assembly to respond to changes in pH between 5.0 and 7.4 in a highly reversible fashion. Catalytic activity is efficiently blocked in the presence of the dendrimer shell but is quantitatively restored upon shell degradation under acidic conditions. Unlike the native proteases, the hybrid constructs are shown to be efficiently taken up by A549 cells and colocalized in the acidic compartments. The programmed intracellular release of the proteases induced cytotoxicity, thereby uncovering a new avenue for precision biotherapeutics.  相似文献   

2.
The repetition of urea-based binding units within the receptor structure does not only lead to monomer properties multiplication. As confirmed by spectroscopic studies, UV-Vis and 1H-NMR in classical or competitive titration mode, the attachment to a carrier allocates the active moieties to mutual positions predetermining the function of the whole receptor molecule. Bivalent receptors form self-aggregates. Dendritic receptors with low dihydrogen phosphate loadings offer a cooperative complexation mode associated with a positive dendritic effect. In higher dihydrogen phosphate concentrations, the dendritic branches act independently and the binding mode changes to 1:1 anion: complexation site. Despite the anchoring, the dendritic receptors retain the superior efficiency and selectivity of a monomer, paving the way to recyclable receptors, desirable for economic and ecological reasons.  相似文献   

3.
4.
5.
6.
We report here the noncovalent synthesis of thermosensitive dendrimers. Short oligoguanosine strands were linked to the focal point of a dendron by using “click chemistry”, and quadruplex formation was used to drive the self‐assembly process in the presence of metal ions. The dynamic nature of these noncovalent assemblies can be exploited to create combinatorial libraries of dendrimers as demonstrated by the co‐assembly of two components. These supramolecular dendrimers showed thermoresponsive behavior that can be tuned by varying the templating cations or the number of guanines in the oligonucleotide strand.  相似文献   

7.
Poly(norbornene)-based block copolymers containing side chains of palladated pincer complexes/dibenzo[24]crown-8 or palladated pincer complexes/dibenzylammonium salts were synthesized. Noncovalent functionalization was accomplished with their corresponding recognition units through simple 1:1 addition with association constants (Ka) greater than 10(5) m(-1). The self-assembly processes were monitored by using both 1H NMR spectroscopy and isothermal titration calorimetry. In all cases, we found that the self-assembly of the recognition units along each polymer block does not preclude the self-assembly processes along the other block.  相似文献   

8.
《化学:亚洲杂志》2017,12(24):3203-3207
The self‐assembly process of a Pd12L24 sphere was revealed by a quantitative approach (quantitative analysis of self‐assembly process: QASAP) quantifying all the substrates, the products, and the observable intermediates, indicating that the Pd12L24 sphere is produced through several pathways. Firstly, Pdn L2n (n= 6, 8, and 9), which are perfectly closed structures smaller than the Pd12L24 sphere, and a mixture of intermediates not observed by NMR ( Int ) were produced. Next, the sphere was assembled from intra‐/intermolecular reaction of a certain class of Int (path A) and from the coordination of free pyridyl groups in Int to the PdII center of Pdn L2n (n= 6, 8, and 9) (path B). While capping the free pyridyl groups in Int with PdII ions perfectly inhibited the sphere formation, the addition of free L to Int accelerated the formation of the sphere.  相似文献   

9.
Overhanging carboxylic acid porphyrins have revealed promising ditopic ligands offering a new entry in the field of supramolecular coordination chemistry of porphyrinoids. Notably, the adjunction of a so‐called hanging‐atop (HAT) PbII cation to regular PbII porphyrin complexes allowed a stereoselective incorporation of the N‐core bound cation, and an allosterically controlled Newton’s cradle‐like motion of the two PbII ions also emerged from such bimetallic complexes. In this contribution, we have extended this work to other ligands and metal ions, aiming at understanding the parameters that control the HAT PbII coordination. The nature of the N‐core bound metal ion (ZnII, CdII), the influence of the deprotonation state of the overhanging COOH group and the presence of a neutral ligand on the opposite side (exogenous or intramolecular), have been examined through 1H NMR spectroscopic experiments with the help of radiocrystallographic structures and DFT calculations. Single and bis‐strap ligands have been considered. They all incorporate a COOH group hung over the N‐core on one side. For the bis‐strap ligands, either an ester or an amide group has been introduced on the other side. In the presence of a base, the mononuclear ZnII or CdII complexes incorporate the carbonyl of the overhanging carboxylate as apical ligand, decreasing its availability for the binding of a HAT PbII. An allosteric effector (e.g., 4‐dimethylaminopyridine (DMAP), in the case of a single‐strap ligand) or an intramolecular ligand (e.g., an amide group), strong enough to compete with the carbonyl of the hung COO?, is required to switch the N‐core bound cation to the opposite side with concomitant release of the COO?, thereby allowing HAT PbII complexation. In the absence of a base, ZnII or CdII binds preferentially the carbonyl of the intramolecular ester or amide groups in apical position rather than that of the COOH. This better preorganization, with the overhanging COOH fully available, is responsible for a stronger binding of the HAT PbII. Thus, either allosteric or acid–base control is achieved through stereoselective metalation of ZnII or CdII. In the latter case, according to the deprotonation state of the COOH group, the best electron‐donating ligand is located on one or the other side of the porphyrin (COO?>CONHR>COOR>COOH): the lower affinity of COOH for ZnII and CdII, the higher for a HAT PbII. These insights provide new opportunities for the elaboration of innovative bimetallic molecular switches.  相似文献   

10.
In the context of designing novel amino acid nanostructures, the capacity of tyrosine alone to form well‐ordered structures under different conditions was explored. It was observed that Tyr can self‐assemble into well‐defined morphologies when deposited onto surfaces for transmission electron microscopy, atomic force microscopy, and scanning electron microscopy. The influence of various parameters that can modulate the self‐assembly process, including concentration of the amino acid, aging time, and solvent, was studied. Different supramolecular architectures, including nanoribbons, branched structures, and fern‐like arrangements were also observed.  相似文献   

11.
Triangular luminescent box : Self‐assembly of a new multidentate receptor with europium cations results in the formation of trinuclear discrete complexes. X‐ray crystallography shows that nine‐coordinate cations are linked by ligands to provide a triangular complex in the solid state and in solution. Despite the coordinated solvent molecules, this topologically unusual complex exhibits remarkable luminescent properties.

  相似文献   


12.
An elongated structural design leading to more conical-shaped dendritic architectures by using a combination of 1-->3, 1-->(2+1), and 1-->(2+1 Me) C-branched monomers is presented. Synthesis of the conifer-shaped macromolecule was achieved by reaction between isocyanate 20 and amine 26 in dry CH2Cl2. A resultant extended focal adamantane-modified dendron was deprotected to generate the water-soluble product, which was subsequently complexed with beta-cyclodextrin in D2O to create the desired tree-like product. Host-guest interactions of the adamantane moiety with the beta-cyclodextrin cavity were monitored by 1H NMR spectroscopy. All monomers, key intermediates, and final products were fully characterized by 1H and 13C NMR spectroscopy, ESI or MALDI-TOF mass spectrometry, and IR spectroscopy.  相似文献   

13.
A series of heteroleptic [Ti 1 2X]? complexes have been selectively constructed from a mixture of TiIV ions, a pyridyl catechol ligand (H2 1 ; H2 1 =4‐(3‐pyridyl)catechol), and various bidentate ligands (HX) in the presence of a weak base, in addition to a previously reported [Ti 1 2(acac)]? (acac=acetylacetonate) complex. Comparative studies of these TiIV complexes revealed that [Ti 1 2(trop)]? (trop=tropolonate) is much more stable than the [Ti 1 2(acac)]? complex, which allows the replacement of acac with trop on the [Ti 1 2(acac)]? complex. This TiIV‐centered site‐selective ligand exchange reaction also takes place on a heteronuclear PdII? TiIV ring complex with the preservation of the PdII‐centered coordination structures. Intra‐ and intermolecular linking between two TiIV centers with a flexible or a rigid bis‐tropolone bridging ligand provided a tetranuclear and an octanuclear PdII? TiIV complex, respectively. These higher‐order structures could be efficiently constructed only through a stepwise synthetic route.  相似文献   

14.
15.
16.
The assembly line : Hexabenzocoronene amphiphiles appended with pyridyl‐terminated triethylene glycol side chains, in combination with trans‐[Pt(PhCN)2Cl2], lead to the formation of graphitic nanotubes. The structural features and dimensions of the nanotubes depend on the assembly conditions. A platinum(II)‐bridged cyclic dimer having two HBC units self‐assembles into a nanotubular structure.

  相似文献   


17.
Dynamic supramolecular systems involving a tetratopic palladium(II) acceptor and three different pyridine‐ and imidazole‐based donors have been used for self‐selection by a synergistic effect of morphological information and coordination ability of ligands through specific coordination interactions. Three different cages were first synthesized by two‐component self‐assembly of individual donor and acceptor. When all four components were allowed to interact in a reaction mixture, only one out of three cages was isolated. The preferential binding affinity towards a particular partner was also established by transforming a non‐preferred cage into a preferred cage by interaction with the appropriate ligand. Computational studies further supported the fact that coordination interaction of imidazole moiety to PdII is enthalpically more preferred compared to pyridine, which drives the selection process. Analysis of crystal packing of both complexes indicated the presence of strong hydrogen bonds between nitrate and water molecules and also H‐bonded 3D networks of water. Both complexes exhibit promising proton conductivity (10?5 to ca. 10?3 S cm?1) at ambient temperature under a relative humidity of circa 98 % with low activation energy.  相似文献   

18.
Controlling the guest expulsion process from a receptor is of critical importance in various fields. Several coordination cages have been recently designed for this purpose, based on various types of stimuli to induce the guest release. Herein, we report the first example of a redox‐triggered process from a coordination cage. The latter integrates a cavity, the panels of which are based on the extended tetrathiafulvalene unit (exTTF). The unique combination of electronic and conformational features of this framework (i.e. high π‐donating properties and drastic conformational changes upon oxidation) allows the reversible disassembly/reassembly of the redox‐active cavity upon chemical oxidation/reduction, respectively. This cage is able to bind the three‐dimensional B12F122? anion in a 1:2 host/guest stoichiometry. The reversible redox‐triggered disassembly of the cage could also be demonstrated in the case of the host–guest complex, offering a new option for guest‐delivering control.  相似文献   

19.
20.
A modular strategy towards receptor macromolecules is presented, which combines synthetically diverse peptide synthesis with highly functional calixarene chemistry. The design and synthesis of calix[4]arene amino acids 1a-f, calix-lysines, is described, which were used as construction blocks to assemble nanoscale, multivalent entities—calix-peptides 2 and calix-peptide-dendrimers 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号