首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ag2+ in Trigonal-Bipyramidal Surrounding New Fluorides with Divalent Silver AgM M F20 (MII = Cd, Ca, Hg; MIV = Zr, Hf) The intensively green compounds AgMMMF20 (MII = Cd, Ca, Hg; MIV = Zr, Hf) have been obtained for the first time as single crystals and investigated by X-ray methods. They crystallize in space group P63/m-C6h2 (Nr. 176) with
  • a = 1052.0(2) pm, c = 828.6(2) pm (AgCd3Zr3F20),
  • a = 1048.0(2) pm, c = 832.6(3) pm (AgCd3Hf3F20),
  • a = 1059.4(2) pm, c = 841.0(3) pm (AgCa3Zr3F20),
  • a = 1053.7(2) pm, c = 830.6(3) pm (AgCa3Hf3F20),
  • a = 1058.9(3) pm, c = 832.6(4) pm (AgHg3Zr3F20),
  • a = 1056.9(2) pm, c = 833.0(3) pm (AgHg3Hf3F20), Z = 2.
  相似文献   

2.
Cs4[Sc6C]Cl13 and Cs4[Pr6(C2)]I13 — Two Examples for the Missing Link in the Connectivity of [M6Z]X X Building Units Cs4[Sc6C]Cl13 (tetragonal, I41/amd, a = 1 540.5(4), c = 1 017.9(7) pm, c/a = 0.661, Z = 4, R = 0.038, Rw = 0.026) and Cs4[Pr6(C2)]I13 (a = 1 804.9(3), c = 1 259.5(3) pm, c/a = 0.698, R = 0.106, Rw = 0.068) are obtained as green-black and blue-black single crystals with brass-like metallic lustre through metallothermic reduction of ScCl3 and PrI3, respectively, with cesium in the presence of carbon in sealed tantalum containers. The, overall, isotypic compounds contain isolated [Sc6C] and [Pr6(C2)] clusters, respectively, that are surrounded by 18 halide (X) ligands (12 Xi and 6 Xa; X = Cl or I). The connection is carried out via the motif [M6Z]XXXX (M = Sc and Pr; Z = C and C2, respectively) and is thereby the missing link of the motifs of connection for the composition Ax[M6Z]X13. Analogous interconnection of [TiO6] octahedra is found in the anatase-type of structure of TiO2.  相似文献   

3.
Synthesis and Structure of MII[AuF4]2 (MII ? Cd, Hg) Cd[AuF4]2 and the isotypic compound Hg[AuF4]2, both are yellow, crystallize tetragonal in the space-group P4/mcc-D (No. 124) with a = 575.0/575.6 pm, c = 1034.8/1042.3 pm and Z = 2. The single-crystals were obtained by solid-state reactions in goldtubes.  相似文献   

4.
Crystal Structure and Properties of Calcium and Strontium Hexathiodiphosphate(IV), Ca2P2S6 and Sr2P2S6, with a Contribution on Ca5P8 and Pb2P2S6 Ca2P2S6 and Sr2P2S6 were prepared from metal and a mixture of red phosphorus and sulfur (molar ratio M:P:S = 1:1:3) in 2 corundum crucibles inserted in quartz ampullae under vacuum (20 d 900°C). The compounds were obtained as colourless, crystalline powders containing single crystals. They crystallize in the Sn2P2S6 (high temperature form) type structure (P21/c, Z = 2): Ca2P2S6 a = 653.2(2)pm, b = 728.1(2)pm, c = 1110.1(4)pm, β = 124.00(4)°, d = 2.50(2); Sr2P2S6 a = 664.3(2)pm, b = 755.7(3)pm, c = 1139.7(3)pm, β = 124.07(2)°, d = 2.97(2). The anions P2S have staggered confirmation and are arranged with the motif of a cubic close-packing. Sr2+ is coordinated by 8S which form a twofold face-capped trigonal prism and belong to 4P2S. Structure calculations clearly show that Pb2P2S6 also crystallizes in P21/c and not in Pc [1]. Also, Raman- and IR-spectra of Ca5P8 were recorded at 20°C. The stretching vibrations of P were assigned in analogy to those of P2S in alkaline earth hexathiodiphosphates(IV). The range of their frequencies (480 to 340 cm?1) is essentially smaller and shifted to smaller values compared with P2S in Ca2P2S6 and Sr2P2S6 (620 to 390 cm?1). The symmetry of P is not D3d but C2h as in the case of P2S.  相似文献   

5.
On Complex Fluorides with Cu2+ and Pd2+: MPtF6 (M ? Pd, Cu) and RbCuPdF5 For the first time single crystals of PdPtF6 (green), trigonal-rhomboedric, a = 503.8, c = 1431.6 pm, spcgr. R3 ? C (No. 148), Z = 3, CuPtF6 (orange), triclinic, a = 495.2, b = 498.5, c = 962.4 pm, α = 89.98, β = 104.23, γ = 120.35°, spcgr. P1 ? C (No. 2), Z = 2 and RbCuPdF5 (orange brown, in connection with investigations on MIPd2F5 [1]), orthorhombic, a = 626.9, b = 719.9, c = 1076.3 pm, spcgr. Pnma? D (No. 62), Z = 4, four circle diffractometer data, have been obtained.  相似文献   

6.
Sulfoximide and Sulfoximidium Salts – Structures and Hydrogen Bonding In the solid state dimethylsulfoximide ( 1 ) (orthorhombic; space group Pbca; a = 577.8, b = 931.2 and c = 1645.6 pm) makes intermolecular N? H ? N hydrogen bonds. The hydrogen halide salts (CH3)2S(O)NH2+Hal? (( 2 ), Hal??Cl?; ( 4 ), Hal??Br?) reacts with metal halides to yield (CH3)2S(O)NH2+MHal with the complex anions (( 5 ), MHal?SbCl4?; ( 6 ), MHal?SbCl52?; ( 7 ), MHal?SbCl6?; ( 8 ), MHal?SbBr52?; ( 9 ), MHal?AlCl4?). 2 crystallizes from ethanol (96%) as [(CH3)2S(O)NH2+Cl?]2 · H2O ( 3 ). The structures of 3 (monoclinic; space group P21/c; a = 917.0, b = 1344.7, c = 1080.8 pm and β = 103.8°; Z = 10), 4 (orthorhombic; space group Pbcn; a = 1028.9, b = 1132.6, c = 1074.1 pm; Z = 8) and 6 (monoclinic; space group C2/c; a = 2041.1, b = 1101.4, c = 3365.6 pm and β = 153.8°; Z = 8) are determined by X-ray analysis. In 6 Sb is coordinated in a distorted octahedra by 6 Cl in three short (mean 245,5 pm; SbCl3) and three long distances (291 to 299 pm; Cl?). Two of the chloride ions connect the Sb atoms to infinite Sb …? Cl …? Sb chains. Except for 7 and 9 there are bridges between the NH2 groups and the halide ions. The NH valence vibrations are discussed in view of hydrogen bonding.  相似文献   

7.
Dibromomethylsulfoniumsalts — Preparation and Crystal Structure The salts CH3SBrA? (A? = SbCl, AsF) were prepared by various routes and characterized by their Ramanspectra. CH3SBrAsF crystallized in the monoclinic space group P21/c with a = 770,5(4) pm, b = 942,4(12) pm, c = 1329,3(14) pm, β = 100,28(6)°, Z = 4. Distances and bond angles in the cation are as expected.  相似文献   

8.
On the Insertion into the Lanthanide–Carbon Bond. Synthesis and Structure of [Cp Sm(C6H5CH2NNO)]2 and [K(18-crown-6)Cp Yb(NCS)2] The compound [CpSm(CH2C6H5)(thf)] was investigated, regarding its reactions with small molecules. The main subject was to detect an insertion into the Ln–C bond. With N2O an insertion reaction is observed, yielding the dimer [CpSm(C6H5CH2NNO)]2 ( 1 ). The structural data of 1 was collected by a single crystal X-Ray diffraction analysis. (Space group P 1, Z = 1, a = 982.8(2) pm, b = 1052.2(2) pm, c = 1383.8(3) pm, α = 89.29(3)°, β = 73.64(3)°, γ = 66.41(3)°). In the dimer, the two Samarium ions are linked via an (η1 : η2) bridge by two benzyl diazotato ligands. A nearly planar six-membered central Sm2N2O2-ring is formend. Two pentamethylcyclopentadienyl ligands complete the coordination sphere of each Samarium ion, which are thus surrounded by four ligands each and have a distorted tetrahedral coordination geometry. An insertion of a SCN fragment in the Ln–C bond could not be observed. The substitution of the benzyl ligand leads to a polymeric chain structure. The new compound [K(18-crown-6)CpYb(NCS)2] 2 contains a tetrahedrally coordinated Yb(III)-ion. (Space group P21/n}, Z = 4, a = 1640.6(3) pm, b = 1482.2(3) pm, c = 1674.5(3) pm, β = 102.82(1)°).  相似文献   

9.
Nitride Sulfide Chlorides of the Lanthanides. II. The Composition M6N3S4Cl (M = La? Nd) The oxidation of the “light” lanthanides (M = La? Nd) with sulfur and NaN3 in the presence of the chlorides MCl3 yields chlorine-poor nitride sulfide chlorides with the composition M6N3S4Cl when appropriate molar ratios of the reactants are used. Additional NaCl as a flux secures complete and fast reactions (7 d) at 850°C in evacuated silica vessels as well as single-crystalline products (red-brown needles). The crystal structure was determined from X-ray single crystal data for the limiting representatives La6N3S4Cl (orthorhombic, Pnma (no. 62), Z = 4, a = 1159.7(4), b = 410.95(7), c = 2756.8(9)pm, R = 0.030, Rw = 0.027) and Nd6N3S4Cl (a = 1137.1(3), b = 399.34(6), c = 2687.6(9)pm, R = 0.034, Rw = 0.033). Guinier powder data revealed the cerium and praseodymium analogues to be isotypic. The crystal structure exhibits two different chains of connected [NM4] tetrahedra which are commensurate in translation. Six crystallographically different M3+ are present, two of them (M1 and M2) build up the chain [(N1)(M1) · (M2)]3+ together with (N1)3? by cis-edge connection of tetrahedra. The four remainders (M3? M6) arrange as pairs [N2M6] of edge-shared [NM4] tetrahedra with (N2)3? and (N3)3? which are further connected via four vertices to form the [(M5)(N-2){(M3)(1+1)/(1+1)(M4)(1+1)/(1+1))}e(N3)(M6)]6+ double chain. Bundled along [010] like a closest packing of rods, both types of chains are held together by five crystallographically different but by X-ray diffraction indistinguishable anions S2? (S1? S4) and Cl? adjusting the charge balance in a molar ratio of 4:1.  相似文献   

10.
The Crystal Structure of Perovskites A NiIIMVIO6. II. Sr2NiWO6 The results of an X-ray single crystal study of the perovskite Sr[NiIIWVI](6)O6, ordered in the octahedral sites, are given. While Sr[NiIITeVI](6)O6 crystallizes in a monoclinically deformed structure of the perovskite (elpasolite) type, showing a phase transition to a tetragonal lattice at 675 °K, Sr[NiIIWVI](6)O6 is tetragonal already at 298°K (space group: C; a = b = 5.559 Å; c = 7.918 Å; Z = 2). The Ni? O distances found for the tungsten compound are nearly identical with those of the tellurium perovskite. In contradiction to crystal field theory very different values of the ligand field parameter Δ (ca. 25%) are observed for these two compounds however. Obviously this effect is caused by the rather different kind of bonding within the NiO6 polyhedra in the two compounds. On the basis of the structural results the Ni? O-bonding in the two perovskites is discussed in dependence of the next nearest cationic environment.  相似文献   

11.
On the Crystal Structure of MnF3 and MnPtF6 Single crystal investigations of MnF3 (rubyred) confirmed the crystal structure based on powder data [2]: monoclinic, space group C 2/c?C (No. 15) with a = 892.02 pm, b = 504.72 pm, c = 1 347.48 pm, β = 92.64° with Z = 12. The corresponding determination of the crystal structure of MnPtF6, yellow, confirmed the unit cell [3] with a = 510.47 pm, c = 1 421.0 pm and γ = 120°, Z = 3 space group R 3 -C (No. 148). For both compounds detailed parameters respectively interatomic distances have been obtained.  相似文献   

12.
Synthesis, Structure, and Magnetic Properties of Compounds NaMIIZr2F11 (MII = Ti, V, Cu) and a Notice on NaPdZr2F11 By synthesizing NaTiZr2F11 in form of red single crystals, it was possible to obtain a complex fluoride with Ti2+ for the first time. It crystallizes like the analogous greenish blue vanadium compound isotypic to AgPdZr2F11 [1] monoclinic, spacegroup C2/m–C (No. 12) with a = 918.0/911.5 pm, b = 682.6/675.7 pm, c = 780.8/776.6 pm, β = 116.2/116.2º and Z = 2. Colourless NaCuZr2F11 however crystallizes as a result of the Jahn-Teller distortion of Cu2+ triclinic (space group P1 –C (No. 2), a = 552.7 pm, b = 568.2 pm, c = 768.0 pm, α = 111.0º, β = 97.4º, γ = 106.4º) and is – as expected – isotypic to NaAgZr2F11 [1].  相似文献   

13.
Synthesis and Crystal Structure of LiPdAlF6 and PdZrF6 . For the first time single crystals of the new compounds LiPdAlF6 and PdZrF6 have been obtained. LiPdAlF6 (blue) crystallizes trigonal, space group P3 1c—D (No. 163; LiCaAlF6-type [2]), in an ordered structure variant of the Li2[ZrF6]-structure [3], with a=497.21(9) pm, c=914.0(9) pm and Z=2. PdZrF6 (also blue) is isotypic with LiSbF6 [4] and crystallizes trigonal-rhomboedric with a=552,3(1) pm, c=1 447,5(4) pm, space group R 3 —C (No. 148) and Z=3.  相似文献   

14.
On Hexagonal Perovskites with Cationic Vacancies. XXXI. Systems BaO? Re2O7? M O5 with MV = Nb, Ta In the systems BaO? Re2O7? MO5 three quaternary oxides are formed, which belong to the perovskite stacking polytypes with cationic vacancies: Ba8Re7/2M□3O24 (MV = Nb, Ta; rhombohedral 24 L type; sequence (hhhhchhc)3; space group R3 m), Ba4Re9/8Ta13/85/4O12 (rhombohedral 12 L type; sequence (hhcc)3; space group R3 m) and the phases Ba5BaRe3/2?xM □O15?xx (MV = Nb, Ta; variants of a hexagonal 5 L type).  相似文献   

15.
Vibrational Spectra of the Cluster Compounds (M6X12i) · 8H2O, M = Nb, Ta; Xi = Cl, Br; Xa = Cl, Br, I IR and, for the first time, Raman spectra at 80 K of the cluster compounds (M6X)X · 8H2O; M = Nb, Ta; Xi = Cl, Br; Xa = Cl, Br, I, have been recorded, characterized by typical frequencies of the (M6X) unit, which are only slightly influenced by the terminal Xa ligands. The most intense line with the depolarisation ≈? 0.2 in all Raman spectra is caused by inphase movement of all atoms and assigned to the symmetric metal-metal vibration v1, observed for the clusters (Nb6Cl) at 233–234, for (Nb6Br) at 186–187, for (Ta6Cl) at 199–203, and for (Ta6Br) at 176–179 cm?1. The IR spectra exhibit in the same series intense bands at 233, 204, 207, and 179 cm?1, assigned to the antisymmetric metal-metal vibration. The metal-metal frequencies are significantly higher than discussed before. The tantalum clusters show on excitation with the krypton line 647.1 nm in the region of a d–d transition at 645 nm a resonance Raman effect with series of overtones and combination bands. In case of (Ta6Br) another polarisized band is observed at 229 cm?1 and assigned to the Ta? Bri vibration v2. From the progressions of v1 and v2 anharmonicity constants of about ?3 cm?1 are calculated indicating a strong distortion of the potential curves.  相似文献   

16.
The System Cs/Cu/F: On CsCuIICuIIIF6 ?CsCuF3,6’? is described in literature as a darkbrown powder which is supposed to crystallize in a cubic lattice (a = 882 pm, Debyeogramms). However Guinier photographs show that ?CsCuF3,6’? is a mixture of CsCuIICuIIIF6 (black, isotypic to CsNiIINiIIIF6, a = 706.7 b = 727.7, c = 1032.2 pm, Z = 4) and Cs2CuCuIIIF6 (auburn, pseudocubic, a = 623.4 c = 886.4 pm, Z = 2).  相似文献   

17.
Determination of Structures of Ordered Perovskites of the Ba2B MVIO6 Type Intensity calculations on powder patterns of Ba2Y□0.33MVIO6 with MVI = U, W, Te und Ba2Gd0.670.33UO6 lead for the space group Fm3m/O with 8 Ba in 8c, 8/3 BIII and 4/3 □ in 4b, 4 MVI in 4a and 24 O in 24e to R values between 4.3 and 7.6%. Two further models are discussed.  相似文献   

18.
Synthesis and Structure of Tetrafluoroaurates(III) MI[AuF4] with MI = Li, Rb Single crystal investigations on Rb[AuF4], light yellow, confirm the tetragonal unit cell (K[BrF4]-type) with a = 618.2(1) and c = 1191(1) pm, Z = 4, space group I 4/mcm-D (No. 140). Li[AuF4], light yellow too, crystallizes monoclinic with a = 485.32(7), b = 634.29(8), c = 1004.43(13) pm, β = 92.759(12), Z = 4; space group P 2/c-C (No. 13). The structure of Li[AuF4] is related to the Rb[AuF4]-type of structure.  相似文献   

19.
Synthesis and Crystal Structure of the Molecular Cluster Compound W6Br14 Brownish-black crystals of W6Br14 are formed in the direct synthesis from W6Br12 and Br2 (400 K). The compound crystallizes cubically with neutral cluster molecules ([W6Br]Br): a = 13.458 Å; Pn3 (Nr. 201); d?(W? W) = 2.653 Å; d?(W? Bri) = 2.616 Å; d?(W? Bra) = 2.569 Å. The W atoms are 0.03 Å outside of the Br cube faces. The molecules are arranged according to a cF point configuration, but each is rotated ?23° about a threefold axis in order to avoid short inter cluster distances Bra? Bra. Nevertheless, via 12 short intermolecular distances per cluster of about d(Bri …? Bra) = 3.487 Å the clusters are interconnected by forming two independent and interpenetrating 3D nets (Cu2O type). Although local distortion of the M6X cluster does not occur, as is expected for this system with 22 electrons per M6 octahedron, it is assumed that the Jahn-Teller theorem is fulfilled collectively via the low-symmetry nets of intermolecular interactions.  相似文献   

20.
Thallium(I) Thiometallates(II, IV), Tl2MeMeIVS6 The preparation and some properties of the compounds Tl2MeMeIVS6 are reported, where MeII = Pt, Pd, Ni; MeIV = Pt, Zr, Sn, Ta. Their structure is discussed in relation to the structure of the alkali compounds A2MeMeIVS6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号