首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Starting from (R)-3-hydroxybutyric acid ((R)- 10 ) the C45- and C50-carotenoids (all-E,2S,2′S)-bacterioruberm ( 1 ), (all-E,2S,2′S)-monoanhydrobacterioruberin ( 2 ), (all-E,2S,2′S)-bisanhydrobacterioruberin ( 3 ), (all-E,2R,2′R)-3,4,3′,4′-tetrahydrobisanhydrobacterioruberin ( 5 ), and (all-E,S)-2-isopentenyl-3,4-dehydrorhodopin ( 6 ) were synthesized. By comparison of the chiroptical data of the natural and the synthetic compounds, the (2S)- and (2′S)-configuration of the natural products 1–3 and 6 was established.  相似文献   

2.
The c40-carotenoid (all-E, 2′R)-deoxy-2′-hydroxyflexixanthin (=1′,2′-dihydroxy-3′,4′-didehydro-1′,2′-dihydro-β,ψ-caroten-4-one;(2′R)- 2 ) was synthesized according to a C15 + C10 + C10 = C40 strategy. The chiral centre was introduced into the C10-end group by the enantioselective Sharpless dihydroxylation. The four building blocks were coupled by applying four consecutive Witting reactions. By comparison of the CD spectra of the synthetic (2′R)- 2 with those of 2 isolated from the gliding bacteria Taxeobacter, the configuration of natural 2 was determined as (2′R).  相似文献   

3.
The synthesis of sarcinaxanthin ((2R,6R,2′R,6′R)- 1 ), a symmetrical C50-carotenoid with two γ-end groups, isolated from Sarcina lutea and from Cellulomonas biazotea as major pigment, was based on the strategy C20 + C10 + C20 = C50 using camphoric acid as starting material for the C20-end group 3. The key step of the synthesis is a ring enlargement of the cyclopentane derivative 10 with 2,4,4,6-tetrabromocyclohexa-2,5-dien-1-one (TBCO) to give the cyclohexane derivative 11 (Scheme 1). The spectroscopic data of the synthetic compound are in full agreement with the data of the isolated product and give the final proof for the (2R,6R,2′R,6′R) chirality of natural sarcinaxanthin.  相似文献   

4.
( all-E)-12′-Apozeanthinol, Persicaxanthine, and Persicachromes Reexamination of the so-called ‘persicaxanthins’ and ‘persicachromes’, the fluorescent and polar C25-apocarotenols from the flesh of cling peaches, led to the identification of the following components: (3R)-12′-apo-β-carotene-3,12′-diol ( 3 ), (3S,5R,8R, all-E)- and (3S,5R,8S,all-E)-5,8-epoxy-5,8-dihydro-12′-apo-β-carotene-3,12′-diols (4 and 5, resp.), (3S,5R,6S,all-E)-5,6-epoxy-5,6-dihydro-l2′-apo-β-carotene-3,12′-diol =persicaxanthin; ( 6 ), (3S,5R,6S,9Z,13′Z)-5,6-dihydro-12′apo-β-carotene-3,12′-diol ( 7 ; probable structure), (3S,5R,6S,15Z)-5,6-epoxy-5,6-dihydro-12′-apo-β-carotene-3,12′-diol ( 8 ), and (3S,5R,6S,13Z)-5,6-epoxy-5,6-dihydro-12′-apo-β-carotene-3,12′-diol ( 9 ). The (Z)-isomers 7 – 9 are very labile and, after HPLC separation, isomerized predominantly to the (all-E)-isomer 6 .  相似文献   

5.
A method is described for the qualitative and quantitative determination of configurational isomers of zeaxanthin (=3,3′ -dihydroxy-β, β -carotene) and lutein (=3,3′ -dihydroxy-α -cartotene). It is based on the reaction of these zeaxathin and lutein isomers with (S)-(+)-α-(1-naphthyl) ethyl isocyanate to afford diastereomeric dicarbamates, which are analyzed by HPLC.  相似文献   

6.
As an extension of previous studies on the total synthesis of (2R,4′R,8′R)-α-tocopherol ( 1 ) [1] [2], (S)-(?)-2-(6-benzyloxy-2,5,7,8-tetramethylchroman)acetic acid ( 6 ), a pivotal intermediate, possessing the absolute configuration required for construction of 1 was prepared by optical resolution of the racemic modification 11 . the latter substance was obtained by two routes, one emanating from the hydroxy acetal 7 [1] and the other based upon the Lewis acid mediated cycloaddition of trimethylhydroquinone to rac.-3-hydroxy-3-methylpent-4-en-l-yl acetate ( 16 ) giving rac. ethyl 2-(6-hydroxy-2,5,7,8-tetramethyl-chroman)acetate ( 12 ).  相似文献   

7.
Cycloviolaxanthin (= (3S,5R,6R,3′S,5′R,6′R)-3.6:3′,6′-Diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene-5,5′-diol), a Novel Carotenoid from Red Paprika (Capsicum annuum) From red paprika (Capsicum annuum var. longum nigrum) cycloviolaxanthin was isolated as a minor carotenoid and, based on spectral data, assigned the symmetrical structure 8 .  相似文献   

8.
A method is described for the qualitative and quantitative determination of configurational isomers of astaxanthin. It is based on the esterification of astaxanthin with (—)-camphanic acid chloride and analysis of the corresponding diesters by HPLC.  相似文献   

9.
10.
Isozeaxanthin: Chirality and Enantioselective Synthesis of (4R,4′R)-Isozeaxanthin ((?)-(4R,4′R)-β, β-Carotin-4,4′-diol) The absolute configuration of optically active isozeaxanthin was established by synthesis using (?)-(R)-4-hydroxy-β-ionon ( 2 ) [18] as starting material.  相似文献   

11.
Stereochemical Correlations between (2R,4′R,8′R)-α-Tocopherol, (25S,26)-Dihydroxycholecalciferol, (–)-(1S,5R)-Frontalin and (–)-(R)-Linalol The optically active C5- and C4-building units 1 and 2 with their hydroxy group at a asymmetric C-atom were transformed to (–)-(1S,5R)-Frontalin ( 7 ) and (–)-(3R)-Linalol ( 8 ) respectively; 1 and 2 had been used earlier in the preparation of the chroman part of (2R,4′R,8′R)-α-Tocopherol ( 6a , vitamin E), and for introduction of the side chain in (25S,26)-Dihydroxycholecalciferol ((25S)- 4 ), a natural metabolite of Vitamin D3. The stereochemical correlations resulting from these converions fit into a coherent picture with those correlations already known from literature and they confirm our earlier stereochemical assignments. A stereochemical assignment concerning the C(25)-epimers of 25,26-Dihydroxycholecalciferol that was in contrast to our findings and that initiated the conversion of 1 and 2 to 7 resp. 8 for additional stereochemical correlations has been corrected in the meantime by the authors [26].  相似文献   

12.
Synthesis of (R)-β, β-Caroten-2-ol and (2R, 2′R)-β, β-Carotene-2,2′-diol Starting from geraniol, the two carotenoids (R)-β, β-caroten-2-ol ( 1 ) and (2R, 2′R)-β, β-carotene-2,2′-diol ( 3 ) were synthesized. The optically active cyclic building block was obtained by an acid-catalysed cyclisation of the epoxide (R)- 4 . The enantiomeric excess of the product was > 95 %.  相似文献   

13.
Luteochrome isolated from the tubers of a white-fleshed variety of sweet potato (Ipomoea batatas LAM .) has been shown by HPLC, 1H-NMR and CD spectra to consist of a mixture of (5R,6S,5′R,8′R)- and (5R,6S,5′R,8′S)- 5,6:5′,8′-diepoxy-5,6,5′,8′-tetrahydro-β,β-carotene ( 1 and 2 , resp.). Therefore, its precursor is (5R,6S,5′R,6′S)-5,6:5′,6′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene ( 4 ). This is the first identification of luteochrome as a naturally occurring carotenoid and, at the same time, gives the first clue to the as yet unknown chirality of the widespread β,β-carotene diepoxide. These facts demonstrate that the enzymic epoxidation of the β-end group occurs from the α-side, irrespective of the presence of OH groups on the ring.  相似文献   

14.
Circular dichroism (CD) spectroscopy was used to distinguish between the isomeric (all‐E)‐configured 3′‐epilutein ( 2 ) and 6′‐epilutein ( 8 ) to establish the absolute configuration of epilutein samples of different (natural and semisynthetic) origin, including samples of 2 obtained from thermally processed sorrel. Thus, the CD data of lutein ( 1 ) and epilutein samples ( 2 ) were compared. Our results unambiguously confirmed the (3R,3′S,6′R)‐configuration of all epilutein samples. Compound 2 was thoroughly characterized, and its 13C‐NMR data are published herewith for the first time.  相似文献   

15.
Carotenoids with 7-Oxabicyclo[2,2.1]heptyl End Groups. Attempted Synthesis of Cycloviolaxanthin ( = (3S,5R,6S,3′S,5′R,6′R)-3,6:3′,6′- Diepoxy-5,6,5′,6′-tetrahydro-β,β-carotin-5,5′-diol) Starting from our recently described synthon (+)- 24 , the enantiomerically pure 3,6:4,5:3′,6′:4′,5′-tetraepoxy-4,5,4′,5′-tetrahydro-ε,ε-carotene ( 34 ) and its 15,15′-didehydro analogue 32 were synthesized in eleven and nine steps, respectively (Scheme 4). Chiroptical data show, in contrast to the parent ε,ε-carotene, a very weak interaction between the chiral centers at C(5), C(5′), C(6), C(6′), and the polyene system. Diisobutylaluminium hydride reduction of 32 lead rather than to the expected 15,15′-didehydro analogue 35 of Cycloviolaxanthin ( 8 ), to the polyenyne 36 (Scheme 5). We explain this reaction by an oxirane rearrangement leading to a cyclopropyl ether followed by a fragmentation to an aldehyd on the one side and an enol ether on the other (Scheme 6). This complex rearrangement includes a shift of the whole polyenyne chain from C(6), C(6′) to C(5), C(5′) of the original molecule.  相似文献   

16.
Search for the Presence in Egg Yolk, in Flowers of Caltha palustris and in Autumn Leaves of 3′-Epilutein ( =(3R,3′S,6′R)-β,ε-Carotene-3,3′-diol) and 3′,O-Didehydrolutein ( =(3R,6′R)-3-Hydroxy-β,ε-carotene-3′-one) 3′.O-Didehydrolutein ( =(3R, 6′R)-3-hydroxy-β,ε-carotene-3′-one; 2) has been detected in egg yolk and in flowers of Caltha palustris. This is the first record for its occurrence in a plant. The compound shows a remarkable lability towards base; therefore, it may have been overlooked til now, because it is destroyed under the usual conditions of saponification of the carotenoid-esters. One of the many products formed from 2 with 1% KOH in methanol has been purified and identified as the diketone 3 ( =(3R)-3-hydroxy-4′, 12′-retro-β,β-carotene-3′,12′-dione). The identification of this transformation product from lutein might throw a new light on the metabolism of this important carotenoid in green plants. 3′-Epilutein ( =(3R,3′S,6′R)-β,ε-carotene-3,3′-diol; 1) was not detected in egg yolk, but is present besides lutein in flowers of C. palustris, thus confirming an earlier report of the occurrence of an isomeric (possibly epimeric) lutein (‘calthaxanthin’) in that plant [21]. We were not able to detect even traces of 1 or 2 in the carotenoid fraction from autumn leaves of Prunus avium (cherry), Parrotia persica, Acer montanum (maple) and yellow needles of Larix europaea (larch). α-Cryptoxanthin (4) , a very rare carotenoid, was isolated in considerable quantity for the first time from flowers of C. palustris.  相似文献   

17.
Absolute Configuration of Loroxanthin (=(3R, 3′R, 6′R)-β, ?-Carotene-3, 19, 3′-triol) ‘Loroxanthin’, isolated from Chlorella vulgaris, was separated by HPLC. methods in two major isomers, a mono-cis-loroxanthin and the all-trans-form. Solutions of the pure isomers easily set up again a mixture of the cis/trans-isomers. Extensive 1H-NMR. spectral measurements at 400 MHz allowed to establish the 3′, 6′-trans-configuration at the ?-end group in both isomers and the (9E)-configuration in the mono-cis-isomer. The absolute configurations at C(3) and C(6′) were deduced from CD. correlations with synthetic (9Z, 3R, 6′R)-β, ?-carotene-3, 19-diol ( 5 ) and (9E, 3R, 6′R)-β, ?-carotene-3, 19-diol ( 6 ), respectively. Thus, all-trans-loroxanthin ( 3 ) is (9Z, 3R, 3′R, 6′R)-β, ?-carotene-3, 19, 3′-triol and its predominant mono-cis-isomer is (9E, 3R, 3′R, 6′R)-β, ?-carotene-3, 19, 3′-triol ( 4 ). Cooccurrence in the same organism and identical chirality at all centers suggest that loroxanthin is biosynthesized from lutein ( 2 ).  相似文献   

18.
19.
Carotenoids mit 7-Oxabicyclo[2.2.1]heptyl-End Groups. Synthesis of (2S,5R,6S,2′S,5′R,6′S)-2,5:2′5′-Diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene Mukayama's ester 6 (methyl (1S,2R,5S)-2,5-epoxy-2,6,6-trimethylcyclohexane-1-carboxylate) was transformed in a few conventional steps into the title compound 14 . Its CD curve was found to be significantly different from that of the analogous 3,6-epoxide, a fact we tentatively lake as an indication of a (weak) electronic interaction between the ring O-atom and the π-orbitals of the polyene chain.  相似文献   

20.
Some 2′-deoxy-1′,2′-seco-D-ribosyl (5′→3′)oligonucleotides (= 1′,2′-seco-DNA), differing from natural DNA only by a bond scission between the centers C(1′) and C(2′), were synthesized and studied in order to compare their structure properties and pairing behavior with those of corresponding natural DNA and homo-DNA oligonucleotides (2′,3′-dideoxy-β-D-glucopyranosyl oligonucleotides). Starting from (?)-D-tartaric acid, 2′-deoxy-1′,2′-secoadenosine derivative 9a and 1′,2′-secothymidine ( 9b ) were obtained in pure crystalline form. Using the phosphoramidite variant of the phosphite-triester method, a dinucleotide monophosphate 1′,2′-seco-d(T2) was synthesized in solution, while oligonucleotides 1′,2′-seco-d[(AT)6], 1′,2′-seco-d(A10) and 1′,2′-seco-d(T10) were prepared on solid phase with either automated or manual techniques. Results of UV- and CD-spectroscopic as well as gel-electrophoretic studies indicated that neither adenine-thymine base pairing (as observed in natural DNA and homo-DNA), nor the adenine-adenine base pairing (as observed in homo-DNA) was effective in 1′,2′-seco-DNA, Furthermore, hybrid pairing was observed neither between 1′.2′-seco-DNA and natural DNA nor between 1′,2′-seco-DNA and homo-DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号