首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of hemoglobin (Hb), oxyhemoglobin (HbO2), and methemoglobin (metHb) with the tetranitrosyl iron complex of the fu2-S type [Fe2(SC4H3N2)2(NO)4] (1) was studied. The reaction results in the nitrosylation of the free SH group of 93-β-cysteine in these forms of hemoglobin. The change in the Hb, HbO2, and metHb concentrations was monitored by spectrophotometry, recording the difference absorption spectra of the experimental systems with these forms of hemoglobin and the buffer containing complex 1 in the same concentration. The absorption spectra were processed to obtain the components using the MATHCAD method. The nitrosothiol concentration was determined by the Saville reaction. In a protic medium containing 3.3% DMSO, complex 1 spontaneously generates NO due to hydrolysis (k = 3.7 · 10-4 s-1). Oxyhemoglobin reacts with evolved NO to form metHb. Complex 1 reduces metHb with a high rate to yield Hb (k = 6.7 · 10-3 s-1) followed by the formation of HbNO (k = 6.5 · 10-3 s-1). Oxidized complex 1 yields NO with a higher rate than the starting complex does. The reaction of HbO2 and metHb (0.02 mmo1 L-1) with complex 1 affords nitrosothiols in micromolar concentration during 5 min, and no nitrosothiol is formed in the case of Hb.  相似文献   

2.
Oligonucleotides containing 7‐deaza‐2′‐deoxyinosine derivatives bearing 7‐halogen substituents or 7‐alkynyl groups were prepared. For this, the phosphoramidites 2b – 2g containing 7‐substituted 7‐deaza‐2′‐deoxyinosine analogues 1b – 1g were synthesized (Scheme 2). Hybridization experiments with modified oligonucleotides demonstrate that all 2′‐deoxyinosine derivatives show ambiguous base pairing, as 2′‐deoxyinosine does. The duplex stability decreases in the order Cd>Ad>Td>Gd when 2b – 2g pair with these canonical nucleosides (Table 6). The self‐complementary duplexes 5′‐d(F7c7I‐C)6, d(Br7c7I‐C)6, and d(I7c7I‐C)6 are more stable than the parent duplex d(c7I‐C)6 (Table 7). An oligonucleotide containing the octa‐1,7‐diyn‐1‐yl derivative 1g , i.e., 27 , was functionalized with the nonfluorescent 3‐azido‐7‐hydroxycoumarin ( 28 ) by the Huisgen–Sharpless–Meldal cycloaddition ‘click’ reaction to afford the highly fluorescent oligonucleotide conjugate 29 (Scheme 3). Consequently, oligonucleotides incorporating the derivative 1g bearing a terminal C?C bond show a number of favorable properties: i) it is possible to activate them by labeling with reporter molecules employing the ‘click’ chemistry. ii) Space demanding residues introduced in the 7‐position of the 7‐deazapurine base does not interfere with duplex structure and stability (Table 8). iii) The ambiguous pairing character of the nucleobase makes them universal probes for numerous applications in oligonucleotide chemistry, molecular biology, and nanobiotechnology.  相似文献   

3.
To understand the substitution effects of 3-aminomethyl-pyridine on the reaction equilibrium, the interactions between a series of 3-aminomethyl-pyridine derivatives and peroxovanadium(V) complex [OV(O2)2(D2O)]?/[OV(O2)2(HOD)]? in solution were explored by the combined use of multinuclear (1H, 13C, and 51V) magnetic resonance spectroscopy together with HSQC in 0.15 M NaCl ionic medium for mimicking the physiological conditions. Some direct NMR data are given for the first time. The relative reactivity among the 3-aminomethyl-pyridine derivative ligands are N-(pyridin-3-ylmethyl)acetamide (1) ≈ N-(pyridin-3-ylmethyl)propionamide (2) > N-(pyridin-3-ylmethyl)pivalamide (3) > t-butyl(pyridin-3-ylmethyl)carbamate (4). The competitive coordination results in the formation of a series of new six-coordinate peroxovanadium species [OV(O2)2L]? (L = 14). The results of density functional calculations indicated that the solvation effects play an important role in these reactions, providing a reasonable explanation on the relative reactivity of the 3-aminomethyl-pyridine derivatives.  相似文献   

4.
Two new unsymmetrical copper(II) Schiff base complexes, [CuLn(py)]ClO4 (n = 1, 2) in which Ln represents a tridentate N2O type Schiff base ligand, were synthesized. Lns were derived from monocondensation of meso-1,2-diphenyl-1,2-ethylenediamine with salicylaldehyde or 3-methoxysalicylaldehyde. The reaction between [CuLn(py)]ClO4 and other salicylaldehyde derivatives resulted in new N2O2 unsymmetrical tetradentate CuII complexes, CuL3–6. Crystal structures of [CuL1(py)]ClO4, CuL4, and CuL5 were obtained. These new complexes as well as a series of related symmetrical ones (i.e. CuL7–12) were tested for their in vitro anticancer activity against human liver cancer cell line (Hep-G2) by MTT and apoptosis assay. All of the complexes showed considerable cytotoxic activity against tumor cell lines (IC50 = 5.13–16.24 μg mL?1). The symmetrical CuL7 was the most potent anticancer derivative (IC50 = 5.13 μg mL?1) compared to the control drug 5-FU (IC50 = 5.4 μg mL-1, p < 0.05). Flow cytometry experiments showed that the copper derivatives especially [CuL2(py)]ClO4 and CuL7 induced more apoptosis on Hep-G2 tumor cell lines compared to 5-FU.  相似文献   

5.
The reaction of S‐(phenyl benzothiazolyl‐2)phosphorodichloridothioate/phosphorodichloridodithioate with 2 mol of phenol/4‐chlorophenol/4‐nitrophenol in the presence of stoichiometric amounts of triethylamine in dry THF/CH2Cl2 has afforded a series of the corresponding organophosphate phenoxy derivatives ( 1a , 1b , 2a , 2b , and 3a , 3b ). Plausible structures have been proposed on the basis of elemental analysis, IR, 1H NMR, 31P NMR, and mass spectral studies. The antibacterial activity of these organophosphate phenoxy derivatives has been evaluated against pathogenic bacteria Staphylococcus aureus (+ve) and Escherichia coli (−ve). The antifungal activity of these organophosphate phenoxy derivatives has been evaluated against pathogenic fungi Aspergillus niger and Fusarium oxysporium. The results indicate that organophosphate phenoxy derivatives are found more active than the parent compounds. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:84–88, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20582  相似文献   

6.
The application of the allyl-ester moiety as protecting principle for the carboxy group of N-acetylneuraminic acid is described. Peracetylated allyl neuraminate 2 is synthesized by reacting the caesium salt of the acid 1 with allyl bromide. Treatment of 2 with HCl in AcCl or with HF/pyridine gives the corresponding 2-chloro or 2-fluoro derivatives 3 and 4 , respectively (Scheme 1). In the presence of Ag2CO3, the 2-chloro carbohydrate 3 reacts with di-O-isopropylidene-protected galactose 5 to give the 2–6 linked disaccharide with the α-D -anomer 6a predominating (α-D /β-D = 6:1; Scheme 2). Upon activation of the 2-fluoro derivative 4 with BF3 · Et2O, the β-D -anomer 6b is formed preferentially (α-D /β-D = 1:5). In further glycosylations of 4 with long-chain alcohols, the β-D -anomers are formed exclusively (see 10 and 11 ; Scheme 4). The allyl-ester moiety can be removed selectively and quantitatively from the neuraminyl derivatives and the neuraminyl disaccharides by Pd(0)-catalyzed allyl transfer to morpholine as the accepting nucleophile (see Scheme 5).  相似文献   

7.
Mononitrosyl and trans ‐Dinitrosyl Complexes of Phthalocyaninates of Manganese and Rhenium Tetra(n‐butyl)ammonium or di(triphenylphosphane)iminium nitrosylacidophthalocyaninato(2–)manganate, (cat)[Mn(NO)(X)pc2–] (X = ONO, NCO, N3; cat = nBu4N, PNP) is prepared from acidophthalocyaninato(2–)manganese, [Mn(X)pc2–], (cat)NO2 and (nBu4N)BH4 in CH2Cl2 or from nitrosylphthalocyaninato(2–)manganese, [Mn(NO)pc2–] and (nBu4N)X (X = ONO, NCO, N3, NCS) at T < 120 °C, respectively. [Mn(NO)(X)pc2–] dissociates in methanol, and [Mn(NO)pc2–] precipitates. Nitrito(O)phthalocyaninato(2–)manganese, (cat)NO2 and hydrogensulfide yield trans‐di(nitrosyl)phthalocyaninato(2–)manganate, trans[Mn(NO)2pc2–], isolated as red violet (PNP) and (nBu4N) complex salt. Nitrosyl(triphenylphosphane oxide)phthalocyaninato(2–)manganese, [Mn(NO)(OPPh3)pc2–] is obtained by addition of OPPh3 to [Mn(NO)pc2–] at 200 °C. Di(triphenylphosphane)phthalocyaninato(2–)rhenium(II) and (PNP)NO2 in CH2Cl2 or in molten (PNP)NO2 and PPh3 at 100 °C yields green blue l‐di(triphenylphosphane)iminium nitrosylnitrito(O)phthalocyaninato(2–)rhenate, l(PNP)[Re(NO)(ONO)pc2–]. Similarly, but with (nBu4N)NO2 red plates of tetra‐(n‐butyl)ammonium trans‐di(nitrosyl)phthalocyaninato(2–)rhenate, (nBu4N)trans[Re(NO)2pc2–] is isolated. Addition of (PNP)Br or (PNP)PF6 to a concentrated solution of (nBu4N)trans[Re(NO)2pc2–] in pyridine precipitates l(PNP)trans[Re(NO)2pc2–]. (nBu4N)trans[Re(NO)2pc2–] and PPh3 at 300 °C yield blue green nitrosyl(triphenylphosphane oxide)phthalocyaninato(2–)‐ rhenium, [Re(NO)(OPPh3)pc2–], that is oxidised with iodine precipitating nitrosyl(triphenylphosphane oxide)phthalocyaninato(2–)rhenium triiodide, [Re(NO)(OPPh3)pc2–]I3. The crystal structures of l(PNP)[Mn(NO)(ONO)pc2–] ( 1 ), l(PNP)‐ [Mn(NO)(NCO)pc2–] ( 2 ), l(PNP)trans[Mn(NO)2pc2–] ( 3 ), l(PNP)trans[Re(NO)2pc2–] ( 4 ) [Mn(NO)(OPPh3)pc2–] ( 5 ), [Re(NO)(OPPh3)pc2–] ( 6 ), and [Re(NO)(OPPh3)pc2–]I3 · CH2Cl2 ( 7 ) have been determined. The M–N(NO) distance varies between 1.623(12) Å in 5 and 1.846(3) Å in 3 . The M–N–O moiety is almost linear. The UV‐Vis spectra with the B band at ca. 14500 cm–1and the Q band at 30400 cm–1 do not dependent significantly on the axial ligand and the metal atom and its oxidation state. N–O stretching vibrations are observed in the IR spectra between 1701 cm–1 in 3 and 1753 cm–1 in [Mn(NO)pc2–] or for the Re series between 1571 cm–1 in 4 and 1724 cm–1 in 7 . M–N(NO) stretching and M–N–O deformation vibrations are assigned in the IR spectra and resonance Raman spectra between 486 cm–1 in 4 and 620 cm–1 in 1 .  相似文献   

8.
Six new 1,3‐diorganylimidazolidin‐2‐ylidene (NHC) gold(I) complexes of the type [Au(NHC)2]+ (1–6), were synthesized by reacting [AuCl(PPh)3] with 1,3‐dimesitylimidazolidin‐2‐ylidene or bis(1,3‐dialkylimidazolidin‐2‐ylidene). The complexes 1–6 were fully characterized by elemental analyses and spectroscopic data. The placement of mesityl or para‐substituted benzyl groups on the nitrogen atoms of the ring of the complexes leads to the particularly active antibacterial agents evaluated in this work. It is worth noting that the p‐methoxybenzyl derivative (2) inhibited the growth of Pseudomona aeruginosa, Staphylococcus epidermidis, Staphylococcus aureus and Enterococcus faecalis with minimum inhibitory concentration (MIC) values of 3.12 µg ml?1, 6.25 µg ml?1, 3.12 µg ml?1 and 3.12 µg ml?1 respectively. In contrast, the analogous p‐dimethylaminobenzyl derivative (3) is effective only against Escherichia coli (MIC = 3.12 µg ml?1). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
The synthesis and antifungal activity of a novel series of 1-[(3,5-bisaryl-2-methylisoxazolidin-3-yl)methyl]-1H-1,2,4-triazoles 6 and 7 (i.e. 8 – 19 ) are discussed. The preparation of 8 – 19 was straightforward and highlighted by a regiospecific 1,3-dipolar cycloaddition of α-substituted (E)-ketonitrones 4 with appropriate atyrene derivatives 5 that led to a cis/trans-diastereoisomeric mixture of the corresponding triazoles (Scheme). The title compounds were evaluated for in vitro antifungal activity in solid agar cultures against a broad array of yeast and systemic mycoses and dermatophytes. The in vivo activity was determined in an immune-compromised mouse model of systemic candidiasis. While the in vitro activity was evident throughout the series, it was moderate in potency. However, some of the triazole derivatives demonstrated a potent in vivo activity comparable to that of the standard drug ketoconazole. Analogue 12 (PR 988-399) emerged as the best overall compound demonstrating potent antifungal activity in both in vitro and in vivo assays.  相似文献   

10.
Reactions of natural helicid with a number of 1,3-dicarbonyl compounds or β-ketoester in the presence of ammonium acetate or 1-naphthylamine gave a series of helicid derivatives containing a 1,4-dihydropyridine fragment (2a–2h). Eight novel helicid derivatives were structurally confirmed by IR, 1H NMR, 13C NMR, and HR-MS spectroscopy and evaluated for their sedative-hypnotic activities on mice. The results demonstrated that two compounds had higher sedative-hypnotic activity compared with helicid.  相似文献   

11.
The novel analogues 11 – 16 of bleomycin A6 ( 3 ) were obtained by selective protection of the primary‐amine function of the β‐aminoalaninamide moiety of 3 by means of coordination with CuII ions, condensation with an aliphatic or aromatic acid R′COOH in the presence of dicyclohexylcarbodiimide, and demetalization (Scheme). The antitumor activity against HeLa and BGC‐823 in vitro, binding property with CT‐DNA, and cleavage potency towards pBR322 DNA were also studied (Tables 13). All the compounds 11 – 16 displayed significant antitumor activity, which was enhanced as the hydrophobicity of the C‐terminus substituent R′ increased, but decreased as the DNA‐binding affinity increased. There was a negative relationship between DNA‐cleavage potency and binding affinity to DNA in this series of compounds.  相似文献   

12.
The d6 metal complexes of thiourea derivatives were synthesized to investigate its cytotoxicity. Treatment of various N‐phenyl‐N´ pyridyl/pyrimidyl thiourea ligands with half‐sandwich d6 metal precursors yielded a series of cationic complexes. Reactions of ligand (L1‐L3) with [(p‐cymene)RuCl2]2 and [Cp*MCl2]2 (M = Rh/Ir) led to the formation of a series of cationic complexes bearing general formula [(arene)M(L1)к2(N,S)Cl]+, [(arene)M(L2)к2(N,S)Cl]+ and [(arene)M(L3)к2(N,S)Cl]+ [arene = p‐cymene, M = Ru ( 1 , 4 , 7 ); Cp*, M = Rh ( 2 , 5 , 8 ); Cp*, Ir ( 3 , 6 , 9 )]. These compounds were isolated as their chloride salts. X‐ray crystallographic studies of the complexes revealed the coordination of the ligands to the metal in a bidentate chelating N,S‐ manner. Further the cytotoxicity studies of the thiourea derivatives and its complexes evaluated against HCT‐116 (human colorectal cancer), MIA‐PaCa‐2 (human pancreatic cancer) and ARPE‐19 (non‐cancer retinal epithelium) cancer cell lines showed that the thiourea ligands displayed no activity. Upon complexation however, the metal compounds possesses cytotoxicity and whilst potency is less than cisplatin, several complexes exhibited greater selectivity for HCT‐116 or MIA‐PaCa‐2 cells compared to ARPE‐19 cells than cisplatin in vitro. Rhodium complexes of thiourea derivatives were found to be more potent as compared to ruthenium and iridium complexes.  相似文献   

13.
The reactions of α-diazo ketones 1a,b with 9H-fluorene-9-thione ( 2f ) in THF at room temperature yielded the symmetrical 1,3-dithiolanes 7a,b , whereas 1b and 2,2,4,4-tetramethylcyclobutane-1,3-dithione ( 2d ) in THF at 60° led to a mixture of two stereoisomeric 1,3-oxathiole derivatives cis- and trans- 9a (Scheme 2). With 2-diazo-1,2-diphenylethanone ( 1c ), thio ketones 2a–d as well as 1,3-thiazole-5(4H)-thione 2g reacted to give 1,3-oxathiole derivatives exclusively (Schemes 3 and 4). As the reactions with 1c were more sluggish than those with 1a,b , they were catalyzed either by the addition of LiClO4 or by Rh2(OAc)4. In the case of 2d in THF/LiClO4 at room temperature, a mixture of the monoadduct 4d and the stereoisomeric bis-adducts cis- and trans- 9b was formed. Monoadduct 4d could be transformed to cis- and trans- 9b by treatment with 1c in the presence of Rh2(OAc)4 (Scheme 4). Xanthione ( 2e ) and 1c in THF at room temperature reacted only when catalyzed with Rh2(OAc)4, and, in contrast to the previous reactions, the benzoyl-substituted thiirane derivative 5a was the sole product (Scheme 4). Both types of reaction were observed with α-diazo amides 1d,e (Schemes 5–7). It is worth mentioning that formation of 1,3-oxathiole or thiirane is not only dependent on the type of the carbonyl compound 2 but also on the α-diazo amide. In the case of 1d and thioxocyclobutanone 2c in THF at room temperature, the primary cycloadduct 12 was the main product. Heating the mixture to 60°, 1,3-oxathiole 10d as well as the spirocyclic thiirane-carboxamide 11b were formed. Thiirane-carboxamides 11d–g were desulfurized with (Me2N)3P in THF at 60°, yielding the corresponding acrylamide derivatives (Scheme 7). All reactions are rationalized by a mechanism via initial formation of acyl-substituted thiocarbonyl ylides which undergo either a 1,5-dipolar electrocyclization to give 1,3-oxathiole derivatives or a 1,3-dipolar electrocyclization to yield thiiranes. Only in the case of the most reactive 9H-fluorene-9-thione ( 2f ) is the thiocarbonyl ylide trapped by a second molecule of 2f to give 1,3-dithiolane derivatives by a 1,3-dipolar cycloaddition.  相似文献   

14.
A new series of cyclopentyl 3‐(2‐methoxy‐4‐(piperazine‐1‐carbonyl)benzyl)‐1‐methyl‐1H‐indol‐5‐ylcarbamate sulfonyl derivatives were synthesized by the reaclion of 4‐((5‐(cyclopentyloxycarbonylamino)‐1‐methyl‐1H‐indol‐3‐yl)methyl)‐3‐methoxybenzoic acid (ZAK drug intermediate) with Boc piperazine in the presence of EDC?HCl, HOBt, TEA in DMF followed by deboxylation by using 2N HCl or 35 % HCl in acetone to get an intermediate compound. Further, this compound was treated with various substituted benzene sulfonyl chlorides in the presence of TEA in THF to afford title compounds. All the title compounds were characterized by 1HNMR, 13CNMR, IR and mass spectral data. The title compounds and starting material were evaluated for their antioxidant activity by using the DPPH, H2O2 and NO methods. The results revealed that some of the compounds have shown significant antioxidant activity.  相似文献   

15.
A series of diaminobenzo[f]- and diaminobenzo[h]pyrimido[4,5-b]quinolines 1–11 were designed as 5-deaza tetracyclic nonclassical, lipophilic antifolates. The compounds were designed as conformationally semi-rigid and rigid analogs of 2,4-diamino-6-phenyl- 12 and 2,4-diamino-7-phenylpyrido[2,3-d]pyrimidines 13 and 14 . The target compounds were synthesized by cyclocondensation of chlorovinyl aldehydes obtained from appropriately substituted 1- or 2-tetralone, with 2,4,6-friaminopyrimidine. Compounds 1–11 were evaluated as inhibitors of P. carinii and T. gondii dihydrofolate reductases. These pathogens cause fatal opportunistic infections in AIDS patients. In addition, the selectivity of these agents was evaluated using rat liver dihydrofolate reductase as the mammalian source. In general the benzo[f]pyrimido[4,5-b]quinolines 1–5 were more potent than the corresponding benzo[h]pyrimido[4,5-b]quinoline analogues 6–11 against P. carinii and rat liver dihydrofolate reductase and were equipotent against T. gondii dihydrofolate reductase. Compounds 6–11 were moderately selective towards T. gondii dihydrofolate reductase with IC50S in the 10−7 M range. In contrast analogues 1–5 lacked selectivity against P. carinii or T. gondii dihydrofolate reductase and were, in general, potent inhibitors of rat liver dihydrofolate reductase with IC50S in the 10−8 M range. Analogues 1 and 4 were evaluated against a series of tumor cell lines in vitro and were found to have moderate antitumor activity (IC50 10−6 M). The structure activity/selectivity relationships suggest that benzo[f]pyrimido analogues 1–5 with the phenyl ring substitution in the “upper” portion of the tetracyclic ring are better accommodated within the rat liver (mammalian) dihydrofolate reductase and P. carinii dihydrofolate reductase active sites compared to the benzo[h]pyrimido analogues 6–11 which have the phenyl ring substitution in the “lower” portion of the tetracyclic ring. In contrast T. gondii dihydrofolate reductase does not discriminate between the isomers and binds to both series of compounds with similar affinities.  相似文献   

16.
《合成通讯》2012,42(2):185-196
Abstract

A series of some pyrrolone derivatives were synthesized from the acid hydrazide, derived from a pyrazolyl-2(3H)-furanone, through treating with some carbonyl reagents such as 1-phenyl-3-(thiophen-2-yl)-1H-pyrazole-4-carbaldehyde, formic acid, lauroyl chloride, succinoyl chloride, propionic anhydride, as well as, ethoxymethylene malononitrile. All compounds were obtained in good yields and characterized by their microanalytical and spectral data. The synthesized products were evaluated for their in vitro antitumor activity against two human carcinoma cell lines (HCT-116 and MCF7) using doxorubicin as a reference drug by MTT assay. The results revealed that some compounds exhibited significant potency. Noteworthy, the N-propionyl hydrazide derivative was the most potent against both cell lines.  相似文献   

17.
2-Phenyl-1, 2, 3-triazole-4-formylhydrazine (2) was prepared by hydrazinolysis of the corresponding ester 1. Reaction of 2 with CS2/KOH gave the oxadiazole derivatives (3) which via Mannich reaction with different dialkyl amines furnished 3-N, N-dialkyl derivatives (4a–c). Also, condensation of 2 with appropriate aromatic acid in POCI3 yielded oxadiazole derivatives (5a–c), or with aldehydes and ketones afforded hydrazones (6a–c). Cyclization of (6a–c) with acetic anhydride gave the desired dihydroxadiazole derivatives (7a–c). On the other hand, reaction of dithiocarbazate (8) with hydrazine hydrate gave the corresponding triazole derivative (9) which on treatment with carboxylic acids in refluxing POCI3 yielded s-triazole [3, 4–b]-1, 3, 4-thiadiazole derivatives (10a–b). The structures of all the above compounds were confirmed by means of IR, 1H NMR, MS and elemental analysis.  相似文献   

18.
A number of pyridazinone derivatives bearing substituted benzylidene and heterocyclic/aromatic rings at 4th and 6th positions, respectively were synthesized in good to moderate yields and screened for antioxidant activity. Antioxidant activity of pyridazinone derivatives was evaluated by using several in vitro radical scavenging methods such as 1,1‐diphenylpicrylhydrazyl (DPPH), hydrogen peroxide (H2O2), nitric oxide (NO), reducing power, and metal chelating assay etc. Molegro virtual docker software was used to study the binding affinity of the title compounds with the xanthine oxidoreductase enzyme. Amongst the tested compounds, 5a, 5d, 5g & 5j were found to exhibit excellent antioxidant activity at par with the positive control, ascorbic acid. The molecular docking studies of these compounds demonstrated a good selectivity profile with xanthine oxidoreductase receptors. A preliminary study of the structural‐activity relationship showed that the presence of electron withdrawing group and heterocyclic ring on pyridazinone nucleus are associated with the best potency and selectivity profile. It could be proposed that xanthine oxidoreductase receptor may be involved in observed antioxidant activity of pyridazinone derivatives bearing aromatic ring and benzylidene substituents and thus the synthesized compounds are worthy of further exploration.  相似文献   

19.
Vilsmeier–Haack‐type cyclization of 1H‐indole‐4‐propanoic acid derivatives was examined as model construction for the A–B–C ring system of lysergic acid ( 1 ). Smooth cyclization from the 4 position of 1H‐indole to the 3 position was achieved by Vilsmeier–Haack reaction in the presence of K2CO3 in MeCN, and the best substrate was found to be the N,N‐dimethylcarboxamide 9 (Table 1). The modified method can be successfully applied to an α‐amino acid derivative protected with an N‐acetyl function, i.e., to 27 (Table 2); however, loss of optical purity was observed in the cyclization when a chiral substrate (S)‐ 27 was used (Scheme 5). On the other hand, the intramolecular Pummerer reaction of the corresponding sulfoxide 20 afforded an S‐containing tricyclic system 22 , which was formed by a cyclization to the 5 position (Scheme 3).  相似文献   

20.
Condensation of 3,4‐dimethoxybenzeneethanamine ( 3d ) and various benzeneacetic acids, i.e., 4a – e , via a practical and efficient one‐pot Bischler–Napieralski reaction, followed by NaBH4 reduction, produced a series of 1‐benzyl‐1,2,3,4‐tetrahydroisoquinolines, i.e., 5a – e , in satisfactory yields (Scheme 3). Oxidative coupling of the N‐acyl and N‐methyl derivatives 6a – e of the latter with hypervalent iodine ([IPh(CF3COO)2]) yielded products with two different skeletons (Scheme 4). The major products from N‐acyl derivatives 6a – c were (±)‐N‐acylneospirodienones 2a – c , while the minor was the 3,4‐dihydroisoquinoline 7 . (±)‐Glaucine ( 1 ), however, was the major product starting from N‐methyl derivative 6e . Possible reaction mechanisms for the formation of these two types of skeleton are proposed (Scheme 5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号