首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
A new saponin, O-α-D -arabinopyranosyl-(1→6)-O-[α-L -rhamnopyranosyl-(1→2)]-O-[β-D -xylopyranosyl-(1→3)]-β-D -glucopyranosyl arjunolate ( 1 ) was isolated from the flowers of Heteropappus biennis (LDB .) TAMAMSCH . The structure was established mainly by a combination of 1D selective and 2D NMR techniques like COSY, TOCSY, ROESY, HMQC, and HMBC. Molecular-modelling calculations showed that the oligosaccharide chain is rather rigid. Six minimum structures are discussed.  相似文献   

2.
From the aerial parts of Scrophularia ilwensis, four new triterpene saponins, ilwensisaponins A–D ( 1 – 4 ) were isolated. The structures of the compounds were elucidated using chemical and spectral data as 13β, 28-epoxy-3-β-{{[β-D -glucopyranosyl-(1→2)]-[α-L -rhamnopyranosyl-(1→4)-β-D -glucopyranosyl-(1→3)]-β-D -fucopyranosyl}-oxy} olean-11-en-23-ol ( 1 ), 3-β-{{[β-D -glucopyranosyl-(1→2)]-[α-L -rhamnopyranosyl-(1→4)-β-D -glucopyranosyl-(1→3)]-β-D -fucopyranosyl}oxy}olena-11, 13(18)-diene-23, 28-diol ( 2 ), 3-β-{{[β-D -glucopyranosyl-(1→2)]-[α-L -rhamnopyranosyl-(1→4)-β-D glucopyranosyl-(1→3)]-β-D fucopyranosyl}oxy}-11α-methoxyolean- 12-ene-23, 28-diol (3) , and 3-β-{{[β-D -glucopyransoyl-(1→2)]-[α-L -rhamnopyranosyl-(1→4)-β-D -glucopyranosyl-(1→3)]-β-D -fucopyranosyl}oxy}olean-12-ene-11α,23,28-triol (4) .  相似文献   

3.
Methyl palmitate (I), methyl stearate (II), stigmasterol (III), β-sitosterol (IV), (O -acyl)-β-D -glucopyranosyl-(1→3)-stigmasterol (V), (O -acyl)-β-D -glucopyranosyl-(1→3)-β-sitosterol (VI), β-D -glucopyranosyl-(1→3)-stigmasterol (VII), β-D -glucopyranosyl-(1→3)-β-sitosterol (VIII), β-D -ecdysone (IX), diosgenin-3-α-L -rhamopyranosyl-(1→2)-[α-L -arabinofuranosyl-(1→4)]-β-D -glucopyranoside (X), diosgenin-3-O -β-chacotrioside (dioscin) (XI), and diosgenin-3-O -α-L -rhamnopyranosyl-(1→4)-α-L -rhamnopyranosyl-(1→4)-[α-L -rhamnopyranosyl-(1→2)]-β-D -glucopyranoside (XII) were isolated and characterized from the stems of Paris formosana Hayata (Liliaceae).  相似文献   

4.
As a continuation of our interest in the study of triterpenoid saponins from Albizia zygia, phytochemical investigation of its stem barks led to the isolation of two new oleanane-type saponins, named zygiaosides CD (12). Their structures were established on the basis of extensive analysis of 1D and 2D NMR (1H-, 13C NMR, DEPT, COSY, TOCSY, ROESY, HSQC and HMBC) experiments, HRESIMS studies, and by chemical evidence as, 3-O-[ β-d-glucopyranosyl-(1→2)-[α-l-arabinopyranosyl-(1→6)]-β-d-glucopyranosyl]-21-O-[(2E,6S)-2,6-dimethyl-6-O-(β-d-quinovopyranosyl) octa-2,7-dienoyl]acacic acid 28-O-α-l-arabinofuranosyl-(1→4)-[β-d-glucopyranosyl-(1→3)]-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl ester (1) and 3- O-[β-d-glucopyranosyl-(1→2) -[ β-d-fucopyranosyl-(1→6)]-β-d-glucopyranosyl]-21-O-[(2E,6S)-2,6-dimethyl-6-O-(β-D-quinovopyranosyl) octa-2,7-dienoyl]acacic acid 28-O-α-l-arabinofuranosyl-(1→4)-[β-d-glucopyranosyl-(1→3)]-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl ester (2).  相似文献   

5.
Five new acyclic monoterpene glycosides 1 – 5 were isolated from the leaves of Viburnum orientale (Caprifoliaceae). Anatolioside ( 1 ) is a monoterpene diglycoside and its structure was elucidated as linalo-6-yl 2′-O-(α-L -rhamnopyranosyl)β-D -glucopyranoside (arbitrary numbering of linalool moiety). Compounds 2 – 5 are all derivatives of 1 , containing additional monoterpene and sugar units, connected by ester and glycoside bonds. Their structures were established as linalo-6-yl O-[(2E,6R)-6-hydroxy-2, 6-dimethylocta-2,7-dienoyl]-(1? → 4″)-O-α-L -rhamnopyranosyl-(1″? → 2″″)-β-D -glucopyranoside ( = anatolioside A; 2 ), linalo-6-yl O-β-D -glucopyranosyl-(1? → 6?)-O-[(2E,6R)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl]-(1? → 4″)-O-α-L -rhamnopyranosyl-(1″ → 2′)–β-D -glucopyranoside ( = anatolioside B; 3 ), linalo-6-yl O-β-D ribo-hexopyranos-3-ulosyl-(1′? → 6?)-O-[(2E,6R)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl]-(1? → 4″)-O-α-L -rhamnopyranosyl-(1″ → 2′)-β-D -glucopyranoside ( = anatolioside C; 4 ) and linalo-6-yl O-[(2E, 6R)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl]-(1″? → 2″″)-O-β-D -glucopyranosly-(1″″ → 6?)-O-[(2E,6R)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl]-(1? → 4″)-O-α-L -rhamnopyranosyl(1″ → 2′)-β-D -glucopyranoside ( = anatolioside D ; 5 ). The structure determinations were based on spectroscopic and chemical methods (acid and alkaline hydrolysis, acetylation and methylation).  相似文献   

6.
A new open-chain monoterpene glycoside, anatolioside E ( 1 ), was isolated from the leaves of Viburnum orientale in addition to three known acyclic monoterpene glycosides, betulalbusides A ( 2 ) and B ( 3 ), and 2(E)-2,6-dimethyl-2,7-octadien-1,6-diol-6-O-β-D -glucopyranoside( 4 ). The structure of anatolioside E ( 1 ) was elucidated on the basis of chemical and spectral data as 6-O-[β-D -glucopyransoyl-(1?? → 6?″)-2-(E), 6(R), 2,6-dimethyl-6-hydroxy-2,7-octadienoyl-(1?″ → 2″″)-β-D -glucopyranosyl-(1″″ → 6?)-2-(E), 6(R), 2,6-dimethyl-6-hydroxy-2,7-octadienoyl-(1? → 4″)-α-L -rhamnopyranosyl-(1″″ → 2′)-β-D -glucopyranosyl]linalool.  相似文献   

7.
From the aerial parts of Lagotis stolonifera (Scrophulariaccae), a new phenylpropanoid glycoside, lagotoside ( 8 ), and the three known glycosides ehrenoside ( 5 ), verbascoside (= acteoside; 6 ), and plantamajoside ( 7 ) were isolated, together with the four known iridoid glucosides aucubin ( 1 ), catalpol( 2 ), globularin ( 4 ), and lythantosalin ( 3 ). The structure of the new compound 8 was elucidated on the basis of chemical and spectral data as 2-(3-hy-droxy-4-methoxyphenyl)ethyl O-[α-L -arabinopyranosyl-(1 → 2)]-O-[α-L -rhamnopyranosyl-(1 → 3)]-4-O-feruloyl-β-D -glucopyranoside.  相似文献   

8.
Four new triterpenoid saponins were isolated from the roots of Adina rubella Hance. They were characterized as adinaic acid 3β-O-[α-L-rhamnopyranosyl(l→2)-β-D-glucopyranosyl(l→2)-β-D-glucurono-pyranoside-6-O-methyl ester]-28-O-β-D)-glucopyranoside, adinaic acid 3β-O-[α-L-rham-nopyranosyl(l→2)-β-D-glucopyranosyl(l→2)-β-D-glucuronopyranoside-6-O-butyl ester]-28-O-β-D-glu-copyranoside, adinaic acid 3β-O-[β-D-glucopyranosyl(l→2)-β-D-glucopyranosyl]-(28→1)-β-D-gluco-pyranosyl(l→6)-β-D-glucopyranosyl ester, 27-hydroxyursolic acid 3β-O-[α-L-rhamnopyranosyl (l→2)-β-O-glucopyranosyl(l→2)-β-D)-glucuronopyranoside-6-O-methyl ester]-28-O-β-D)-glucopyranoside. Their structures were elucidated by spectral methods, especially with the aid of 2D NMR techniques. Their complete assignments of the 1H and 13C NMR signals were carried out.  相似文献   

9.
A new phenlypropanoid glycoside has been isolated from the methanolic extract of the aerial parts of Stachys lavandulifolia (Lamiaceae), lavandulifolioside (1) . On the basis of chemical and spectral data the structure of the new compound 1 has been elucidated as β-(3,4-dihydroxyphenyl)ethyl O-α-L -arabinopyranosyl-(1→2)-α-L -rhamnopyranosyl-(1→3)-4-O-caffeoyl-β-D -glucopyranoside.  相似文献   

10.
Two new saponins, β-D -glucopyranosyl 3-O[O-βD -xylopyranosyl-(1→3)-O-(β-D -glucopyranosyluronic acid)]oleanolate ( 1 ) and 3-O-[O-β-D -xylopyranosyl-(1→3)-O-(β-D-glucopyranosyluronic acid)]oleanolic acid ( 2 ), have been isolated from the tubers of Talinum tenuissimum. The structures have been established mainly by 13C-NMR and FAB-MS. The monodesmosidic saponin 2 exhibits very strong molluscicidal activity against the schistosomiasis-transmitting snail Biomphalaria glabrata.  相似文献   

11.
One new acacic acid-type saponin, named lebbeckoside C (1), was isolated from the stem barks of Albizia lebbeck. Its structure was established on the basis of extensive analysis of 1D and 2D NMR (1H, 13C NMR, DEPT, COSY, TOCSY, ROESY, HSQC and HMBC) experiments, HRESIMS studies, and by chemical evidence as 3-O-[β-d-xylopyranosyl-(l→2)-β-d-fucopyranosyl-(1→6)-[β-d-glucopyranosyl(1→2)]-β-d-glucopyranosyl]-21-O-{(2E,6S)-6-O-{4-O-[(2E,6S)-2,6-dimethyl-6-O-(β-d-quinovopyranosyl)octa-2,7-dienoyl]-4-O-[(2E,6S)-2,6-dimethyl-6-O-(β-d-quinovopyranosyl)octa-2,7-dienoyl]-β-d-quinovopyranosyl}-2,6-dimethylocta-2,7-dienoyl}acacic acid 28 O-[β-d-quinovopyranosyl-(l→3)-[α-l-arabinofuranosyl-(l→4)]-α-l-rhamnopyranosyl-(l→2)-β-d-glucopyranosyl] ester. The isolated saponin (1) displayed significant cytotoxic activity against the human glioblastoma cell line U-87 MG and TG1 stem-like glioma cells isolated from a patient tumor with IC50 values of 1.69 and 1.44 μM, respectively.  相似文献   

12.
Two natural steroidal glycosides, diosgenin 3-O-α-l-rhamnopyranosyl-(1→2)-[β-d-glucopyranosyl-(1→4)]-β-d-glucopyranoside (1) and laxogenin 3-O-α-l-rhamnopyranosyl-(1→2)-[β-d-glucopyranosyl-(1→4)]-β-d-glucopyranoside (2) with important cytotoxic activity against the HCT 116 and HT-29 human colon cancer cell lines have been efficiently synthesized via straightforward sequential glycosylation reaction with the combined use of N-phenyltrifluoroacetimidates and trichloroacetimidates donors at room temperature. All structures of the synthesized new compounds were identified by 1H NMR, 13C NMR and HRMS spectra.  相似文献   

13.
A new triterpenoid saponin, 3-O-[(6′-butyryl)-β-D-glucopyranosyl]-28-O-[α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl] oleanolic acid, as well as three known triterpenoid saponins were isolated from the rhizomes of Anemone flaccida. Their structures were elucidated by spectroscopic methods. These compounds showed significant antitumor activities.  相似文献   

14.
A new acylated kaempferol glycoside, kaempferol 3-O-α-l-rhamnopyranosyl-(1 → 6)-O-[β-d-glucopyranosyl-(1 → 2)-4-O-acetyl-α-l-rhamnopyranosyl-(1 → 2)]-β-d-galactopyranoside, has been isolated from the leaves of Tipuana tipu (Benth.) Lillo growing in Egypt, along with three known flavonol glycosides, kaempferol 3-O-rutinoside, quercetin 3-O-rutinoside (rutin) and kaempferol 3-O--l-rhamnopyranosyl-(1 → 6)]-[α-l-rhamnopyranosyl-(1 → 2]-β-d-glucopyranoside. Structure elucidation was achieved through different spectroscopic methods. Structure relationship with anti-inflammatory activity using carrageenin-induced rat paw oedema model is discussed.  相似文献   

15.
Isolation and Structure Elucidation of Neapolitanose (O-β-D -Glucopyranosyl-(1→2)-O-[β-D -glucopyranosyl-(1→6)]-D -glucose), New Trisaccharide from the Stigmas of Garden Crocusses (Crocus neapolitanus var.) From the stigmas of Crocus neapolitanus var. ‘Blue Bird’ two new crocetin glycosyl esters were isolated. They contained a hitherto unknown trisaccharide. For the structure elucidation a homonuclear 2D-1H-NMR-shift-correlation experiment was carried out with the peracetate of the isolated trisaccharide. This experiment revealed that the carbohydrate is O-β-D -glucopyranosyl-(1→2)-O-[β-D -glucopyranosyl-(1→6))]-D -glucose, for which we suggest the name ‘neapolitanose’. The two new C20-carotenoids from Crocus neapolitanus are crocetin (β-gentiobiosyl) (β-neapolitanosyl) ester ( 4 ) and crocetin di(β-neapolitanosyl) ester ( 5 ).  相似文献   

16.
Two new triterpenoids and three 27-nor-triterpenoids were isolated from the stems (with bark) of Nauclea officinalis. Their structures were identified to be 2β,3β,19α,23-tetrahydroxy-urs-12-en-28-oic acid (1), 2β,3β,19α,23-tetrahydroxy-urs-12-en-28-O-[β-d-glucopyranosyl (1-2)-β-d-glucopyranosyl] ester (2), pyrocincholic acid 3β-O-α-l-rhamnopyranoside (3), pyrocincholic acid 3β-O-α-l-rhamnopyranosy1-28-O-β-d-glucopyranosyl ester (4), pyrocincholic acid 3β-O-α-l-rhamnopyranosy1-28-O-β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl ester (5) by spectroscopic methods including 1D, 2D NMR and HR-MS analyses. The cytotoxic activity of 15 against lung cancer A-549 cells was also investigated.  相似文献   

17.
Isolation of flavonoids from the aerial parts of Taverniera aegyptiaca Bioss. (Fabaceae) led to identification of one new flavonol glycoside, isorhamnetin-3-O-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside (1), along with eleven compounds, which previously have not been isolated from this plant quercetin-3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)-β-d-galactopyranoside] (2), isorhamnetin-3-O-α-l-arabinopyranoside (3), quercetin-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (4), isorhamnetin-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (7), isorhamnetin 3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)-β-d-galactopyranoside] (8), isorhamnetin 3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside] (9), kaempferol 3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)-β-d-galactopyranoside] (10), isorhamnetin (11), 4,4′-dihydroxy-2′-methoxychalcone (12), formononetin (13) and calycosin (15)] and some compounds already known from this plant [quercetin-3-O-robinobioside (5), isorhamnetin-3-O-robinobioside (6), afrormosin (14) and odoratin (16)].  相似文献   

18.
张志平  衣悦涛  宁君 《有机化学》2005,25(10):1240-1243
以已知的2,3,4,6-四-O-苯甲酰基--D-葡萄吡喃糖-(13)-[2,3,4,6-四-O-苯甲酰基-β-D-葡萄吡喃糖-(16)]-2,4- 二-O-乙酰基-β-D-葡萄吡喃糖-(13)-2,4,6-三-O-乙酰基-α-D-葡萄吡喃糖三氯乙酰亚胺酯(2)为供体, 以2-O-苯甲酰 基-4,6-O-苄叉基-α-D-葡萄吡喃糖烯丙基苷(4)作为受体, 立体专一性地偶联得到β-1,3连接的五糖5. 五糖5酸解脱去4,6-苯亚甲基基后与2,3,4,6-四-O-苯甲酰基-α-D-葡萄吡喃糖三氯乙酰亚胺酯(7)偶联, 区域和立体专一性地得到全保护的β-1,3主链β-1,6支链的六糖8. 六糖8脱保护后得到目标化合物香菇多糖核心片段六糖9. 发展了合成该类化合物的一种新方法.  相似文献   

19.
High-speed counter-current chromatography (HSCCC) was applied to the preparative isolation and purification of peonidin 3-O-(6-O-(E)-caffeoyl-2-O-β-D -glucopyranosyl-β-D -glucopyranoside)-5-O-β-D -glucoside ( 1 ), cyanidin 3-O-(6-O-p-coumaroyl)-β-D -glucopyranoside ( 2 ), peonidin 3-O-(2-O-(6-O-(E)-caffeoyl-β-D -glucopyranosyl)-6-O-(E)-caffeoyl-β-D -glucopyranoside)-5-O-β-D -glucopyranoside ( 3 ), peonidin 3-O-(2-O-(6-O-(E)-feruloyl-β-D -glucopyranosyl)-6-O-(E)-caffeoyl-β-D -glucopyranoside)-5-O-β-D -glucopyranoside ( 4 ) from purple sweet potato. Separation of crude extracts (200 mg) from the roots of purple sweet potato using methyl tert-butyl ether/n-butanol/acetonitrile/water/trifluoroacetic acid (1:4:1:5:0.01, v/v) as the two-phase solvent system yielded 1 (15 mg), 2 (7 mg), 3 (10 mg), and 4 (12 mg). The purities of 1 – 4 were 95.5%, 95.0%, 97.8%, and 96.3%, respectively, as determined by HPLC. Compound 2 was isolated from purple sweet potato for the first time. The chemical structures of these components were identified by 1H NMR, 13C NMR and ESI-MSn.  相似文献   

20.
The Heart Glycosides of the Arrow Poison of Lophopetalum toxicum LOHER From the cytotoxic and positive inotropic acting bark extract of the Philippinan Lophopetalum toxicum eight heart glycosides have been isolated and their structures have been elucidated mainly by field-desorption-MS- and 1- and 13C-NMR spectroscopy. Besides the known k-Strophanthidin ( 1 ), Antiarigenin ( 6 ) and β-Antiarin (Antiarigenin-3-β-O-α-L -rhamnoside, 10 ) the following mono- and diglycosides could be identified: strophanthidin-3-β-O-α-6-desoxy-D -allopyranoside (strophalloside, 2 ), strophanthidin-3-β-O-β-6-desoxy-D -glucopyranoside (= Strophanthidin chinovoside, 3 ), strophanthidin-3-β-O[-4Oβ-D -allopyranosyl-β-6-desoxy-D -allopyranoside] ( 4 ), strophanthidin-3-β-O-[3-O-β-D -glucopyranosyl-β-6-desoxy-D -talopyranoside] ( 5 ), antiarigenin-3-β-O-[3-O-β-D -gulopyranosyl-β-6-desoxy-D -talopyranoside] ( 7 ), antiarigenin-3-β-O-[4O-β-D -allopyranosyl-β-6-desoxy-D -allopyranoside] ( 8 ), and antiarigenin-3-β-O-β-6-desoxy-D -allopyranoside (antiallosid) ( 9 ). The structure of strophanthidinchinovoside ( 3 ) could be confirmed by synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号