首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the vehicle routing problem (VRP), a fleet of vehicles must service the demands of customers in a least-cost way. In the split delivery vehicle routing problem (SDVRP), multiple vehicles can service the same customer by splitting the deliveries. By allowing split deliveries, savings in travel costs of up to 50 % are possible, and this bound is tight. Recently, a variant of the SDVRP, the split delivery vehicle routing problem with minimum delivery amounts (SDVRP-MDA), has been introduced. In the SDVRP-MDA, split deliveries are allowed only if at least a minimum fraction of a customer’s demand is delivered by each visiting vehicle. We perform a worst-case analysis on the SDVRP-MDA to determine tight bounds on the maximum possible savings.  相似文献   

2.
In this paper, we study the zero-inventory production and distribution problem with a single transporter and a fixed sequence of customers. The production facility has a limited production rate, and the delivery truck has non-negligible traveling times between locations. The order in which customers may receive deliveries is fixed. Each customer requests a delivery quantity and a time window for receiving the delivery. The lifespan of the product starts as soon as the production for a customer’s order is finished, which makes the product expire in a constant time. Since the production facility and the shipping truck are limited resources, not all the customers may receive the delivery within their specified time windows and/or within product lifespan. The problem is then to choose a subset of customers from the given sequence to receive the deliveries to maximize the total demand satisfied, without violating the product lifespan, the production/distribution capacity, and the delivery time window constraints. We analyze several fundamental properties of the problem and show that these properties can lead to a fast branch and bound search procedure for practical problems. A heuristic lower bound on the optimal solution is developed to accelerate the search. Empirical studies on the computational effort required by the proposed search procedure comparing to that required by CPLEX on randomly generated test cases are reported.  相似文献   

3.
考虑随机服务时间与行为特征互不相同的异质患者,建立随机混合整数规划模型对门诊预约调度问题展开研究。首先在给定服务顺序的假设下求解了两个患者的预约调度问题;在此基础上,设计启发式算法对多个患者预约方案和服务顺序同时进行优化。数值结果表明:当患者服务时间为独立同分布的随机变量时,患者预约时间间隔呈现先增加后减少的圆顶形状;当患者服务时间服从不同分布时,通过与样本平均近似方法对比,验证了启发式算法的计算效率和有效性。  相似文献   

4.
The personnel staffing problem calculates the required workforce size and is determined by constructing a baseline personnel roster that assigns personnel members to duties in order to cover certain staffing requirements. In this research, we incorporate the planning of the duty demand in the staff scheduling problem in order to lower the staffing costs. More specifically, the demand originates from a project scheduling problem with discrete time/resource trade-offs, which embodies additional flexibility as activities can be executed in different modes. In order to tackle this integrated problem, we propose a decomposed branch-and-price procedure. A tight lower and upper bound are calculated using a problem formulation that models the project scheduling constraints and the time-related resource scheduling constraints implicitly in the decision variables. Based upon these bounds, the strategic problem is decomposed into multiple tactical subproblems with a fixed workforce size and an optimal solution is searched for each subproblem via branch-and-price. Fixing the workforce size in a subproblem facilitates the definition of resource capacity cuts, which limit the set of eligible project schedules, decreasing the size of the branching tree. In addition, in order to find the optimal integer solution, we propose a specific search strategy based upon the lower bound and dedicated rules to branch upon the workload generated by a project schedule. The computational results show that applying the proposed search space decomposition and the inclusion of resource capacity cuts lead to a well-performing procedure outperforming different other heuristic and exact methodologies.  相似文献   

5.
Since maintenance jobs often require one or more set-up activities, joint execution or clustering of maintenance jobs is a powerful instrument to reduce shut-down costs. We consider a clustering problem for frequency-constrained maintenance jobs, i.e. maintenance jobs that must be carried out with a prescribed (or higher) frequency. For the clustering of maintenance jobs with identical, so-called common set-ups, several strong dominance rules are provided. These dominance rules are used in an efficient dynamic programming algorithm which solves the problem in polynomial time. For the clustering of maintenance jobs with partially identical, so-called shared set-ups, similar but less strong dominance rules are available. Nevertheless, a surprisingly well-performing greedy heuristic and a branch and bound procedure have been developed to solve this problem. For randomly generated test problems with 10 set-ups and 30 maintenance jobs, the heuristic was optimal in 47 out of 100 test problems, with an average deviation of 0.24% from the optimal solution. In addition, the branch and bound method found an optimal solution in only a few seconds computation time on average.  相似文献   

6.
A mixed integer programming model for scheduling orders in a steel mill   总被引:1,自引:0,他引:1  
The problem of scheduling orders at each facility of a large integrated steel mill is considered. Orders are received randomly, and delivery dates are established immediately. Each order is filled by converting raw materials into a finished saleable steel product by a fixed sequence of processes. The application of a deterministic mixed integer linear programming model to the order scheduling problem is given. One important criterion permitted by the model is to process the orders in a sequence which minimizes the total tardiness from promised delivery for all orders; alternative criteria are also possible. Most practical constraints which arise in steelmaking can be considered within the formulation. In particular, sequencing and resource availability constraints are handled easily. The order scheduling model given here contains many variables and constraints, resulting in computational difficulties. A decomposition algorithm is devised for solving the model. The algorithm is a special case of Benders partitioning. Computational experience is reported for a large-scale problem involving scheduling 102 orders through ten facilities over a six-week period. The exact solution to the large-scale problem is compared with schedules determined by several heuristic dispatching rules. The dispatching rules took into consideration such things as due date, processing time, and tardiness penalties. None of the dispatching rules found the optimal solution.  相似文献   

7.
In a real production and distribution business environment with one supplier and multiple heterogeneous buyers, the differences in buyers’ ordering cycles have influence on production arrangements. Consequently, the average inventory level (AIL) at the supplier’s end is affected by both the production policy and the ordering policy, typically by the scheduling of deliveries. Consequently, the average inventory holding cost is most deeply affected. In this paper, it is proposed that the scheduling of deliveries be formulated as a decision problem to determine the time point at which deliveries are made to buyers in order to minimize the supplier’s average inventory. A formulation of the average inventory level (AIL) in a production cycle at the supplier’s end using a lot-for-lot policy is developed. Under the lot-for-lot policy, the scheduling of deliveries (SP) is formulated as a nonlinear programming model used to determine the first delivery point for each buyer with an objective to minimize the sum of the product of the individual demand quantity and the first delivery time for each buyer. Thus, the SP model determines not only the sequence of the first deliveries to individual buyers, but also the time when the deliveries are made. An iterative heuristic procedure (IHP) is developed to solve the SP model assuming a given sequence of buyers. Six sequence rules are considered and evaluated via simulation.  相似文献   

8.
This paper considers the problem of finding an optimal or economic service rate in queueing situations that can be modelled as birth-death processes. The costs and revenues considered are a cost for waiting, a cost for operating the server, and a revenue for each customer served. The paper derives certain optimality conditions that must be met in order that the service rate is optimal. These results are then applied to find economic service rates from graphs.  相似文献   

9.
We consider a transportation problem where different products have to be shipped from an origin to a destination by means of vehicles with given capacity. The production rate at the origin and the demand rate at the destination are constant over time and identical for each product. The problem consists in deciding when to make the shipments and how to fill the vehicles, with the objective of minimizing the sum of the average transportation and inventory costs at the origin and at the destination over an infinite horizon. This problem is the well known capacitated EOQ (economic order quantity) problem and has an optimal solution in closed form. In this paper we study a discrete version of this problem in which shipments are performed only at multiples of a given minimum time. It is known that rounding-off the optimal solution of the capacitated EOQ problem to the closest lower or upper integer value gives a tight worst-case ratio of 2, while the best among the possible single frequency policies has a performance ratio of 5/3. We show that the 5/3 bound can be obtained by a single frequency policy based on a rounding procedure which considers classes of instances and, for each class, identifies a shipping frequency by rounding-off in a different way the optimal solution of the capacitated EOQ problem. Moreover, we show that the bound can be reduced to 3/2 by using two shipping frequencies, obtained by a rounding procedure, in one class of instances only.  相似文献   

10.
本文研究服务水平约束下的动态定价与库存管理问题。企业在有限期内销售某种产品,产品的需求为随机需求,且期望需求依赖于产品价格。在每一期期初,企业需要在满足服务水平约束的条件下同时决定订货量和产品价格。本文首先构建了动态定价和订购联合决策的随机动态规划模型,并证明了最优解的存在性。进一步,通过对最优解的结构进行刻画,将原问题的求解转化为若干子问题的求解,降低了问题求解的难度。通过对最优解的分析发现,当期初库存增大时,产品最优价格降低。通过分析目标服务水平对利润的影响,证明了服务水平与利润之间存在权衡,实现高的服务水平需要承受利润损失。数值模拟表明,相对于传统的静态定价策略,采用动态定价策略可以降低追求服务水平所带来的利润损失,验证了动态定价策略的有效性。  相似文献   

11.
Consider a one-warehouse multi-retailer system under constant and deterministic demand, which is subjected to transportation capacity for every delivery period. To search for the best stationary zero inventory ordering (ZIO) policy, or the best power-of-two policy, or the best nested policy, the problem is formulated as a 0–1 integer linear program in which the objective function comprises of a fixed transportation cost whenever a delivery is made and the inventory costs for both the warehouse and retailers. To overcome the transportation capacity limitation, we extend the policies to allow for staggering deliveries. It is shown that with transportation capacity constraint the non-staggering policy can have its effectiveness close to 0% from the best staggering policy and the power-of-two policy with staggering allowed can have its effectiveness close to 0% from the optimal policy. Nevertheless in general, the power-of-two policy fairs well on a number of randomly generated problems. To solve the large distribution network problem, an efficient heuristic based on the power-of-two policy with staggering of deliveries is suggested.  相似文献   

12.
We provide an efficient computational approach to solve the mixed integer programming (MIP) model developed by Tarim and Kingsman [8] for solving a stochastic lot-sizing problem with service level constraints under the static-dynamic uncertainty strategy. The effectiveness of the proposed method hinges on three novelties: (i) the proposed relaxation is computationally efficient and provides an optimal solution most of the time, (ii) if the relaxation produces an infeasible solution, then this solution yields a tight lower bound for the optimal cost, and (iii) it can be modified easily to obtain a feasible solution, which yields an upper bound. In case of infeasibility, the relaxation approach is implemented at each node of the search tree in a branch-and-bound procedure to efficiently search for an optimal solution. Extensive numerical tests show that our method dominates the MIP solution approach and can handle real-life size problems in trivial time.  相似文献   

13.
We consider an integrated production and distribution scheduling problem in a make-to-order business scenario. A product with a short lifespan (e.g., perishable or seasonal) is produced at a single production facility with a limited production rate. This means that the product expires in a constant time after its production is finished. Orders are received from a set of geographically dispersed customers, where a demand for the product and a time window for the delivery is associated with each customer for the planning period. A single vehicle with non-negligible traveling times between the locations is responsible for the deliveries. Due to the limited production and distribution resources, possibly not all customers may be supplied within their time windows or the lifespan. The problem consists in finding a selection of customers to be supplied such that the total satisfied demand is maximized. We extend the work by Armstrong et al. (Annals of Operations Research 159(1):395–414, 2008) on the problem for fixed delivery sequences by pointing out an error in their branch and bound algorithm and presenting a corrected variant. Furthermore, we introduce model extensions for handling delays of the production start as well as for variable production and distribution sequences. Efficient heuristic solution algorithms and computational results for randomly generated instances are presented.  相似文献   

14.
We consider a single item, uncapacitated stochastic lot-sizing problem motivated by a Dutch make-to-order company producing steel pipes. Since no finished goods inventory is kept, a delivery date is fixed upon arrival of each order. The objective is to determine the optimal size of production lots so that delivery dates are met as closely as possible with a limited number of set-ups. Orders that are not satisfied on time are backordered and a penalty cost is incurred in those cases. We formulate the problem as a Markov Decision Process and determine the optimal production policy by dynamic programming. Since this approach can only be applied to very small examples, attention is given to the development of three simple lot-sizing rules. The first strategy consists of producing the orders for a fixed numberT of periods whenever the demand for the current period reaches a pre-specified limitx. A simple set of tests is proposed leading to cost improvements in situations where the best combination for the decision variablesx andT deviates from the optimal policy. The second lot-sizing rule is based on the well-known Silver-Meal heuristic for the case of deterministic time-varying demand. A fixed cycle production strategy is also derived. Numerical examples taking into account different demand patterns are provided. The analysis of the results suggests that the first heuristic is particularly suitable for the problem under consideration. Finally, the model is incorporated in the operations control level of the hierarchical production planning system of the Dutch company and assists the management in the evaluation of the quality of the aggregate decisions. A consequence of this feedback mechanism is the modification of the aggregate plans.On leave from D.E.I.O. (Universidade de Lisboa, Portugal). This research was supported by J.N.I.C.T. (Portugal) under contract BD/2264/92.IA.  相似文献   

15.
This paper presents a single item capacitated stochastic lot-sizing problem motibated by a Dutch company operating in a Make-To-Order environment. Due to a highly fluctuating and unpredictable demand, it is not possible to keep any finished goods inventory. In response to a customer's order, a fixed delivery date is quoted by the company. The objective is to determine in each period of the planning horizon the optimal size of production lots so that delivery dates are met as closely as possible at the expense of minimal average costs. These include set-up costs, holding costs for orders that are finished before their promised delivery date and penalty costs for orders that are not satisfied on time and are therefore backordered. Given that the optimal production policy is likely to be too complex in this situation, attention is focused on the development of heuristic procedures. In this paper two heuristics are proposed. The first one is an extension of a simple production strategy derived by Dellaert [5] for the uncapacitated version of the problem. The second heuristic is based on the well-known Silver-Meal algorithm for the case of deterministic time-varying demand. Experimental results suggest that the first heuristic gives low average costs especially when the demand variability is low and there are large differences in the cost parameters. The Silver-Meal approach is usually outperformed by the first heuristic in situations where the available production capacity is tight and the demand variability is low.  相似文献   

16.
This article considers the problem of scheduling preemptive open shops to minimize total tardiness. The problem is known to be NP-hard. An efficient constructive heuristic is developed for solving large-sized problems. A branch-and-bound algorithm that incorporates a lower bound scheme based on the solution of an assignment problem as well as various dominance rules are presented for solving medium-sized problems. Computational results for the 2-machine case are reported. The branch-and-bound algorithm can handle problems of up to 30 jobs in size within a reasonable amount of time. The solution obtained by the heuristic has an average deviation of less than 2% from the optimal value, while the initial lower bound has an average deviation of less than 11% from the optimal value. Moreover, the heuristic finds approved optimal solutions for over 65% of the problems actually solved.  相似文献   

17.
This paper addresses the problem of partitioning a local service region into nonoverlapping work areas in which pickups and deliveries are made throughout the day. For a fleet of homogeneous vehicles, a given set of customers, and expected demand for service, the objective is to find the least number of work areas or clusters that satisfy a variety of geometric and capacity constraints. Using rectangles as the basic shape, each cluster must have an aspect ratio that falls within certain bounds, as well as meet load and time requirements dictated by the capacity of a vehicle and the working hours in a day, respectively. The latter requirement presents a unique hurdle because travel times are a function of the actual routes followed by the drivers, and are not known, even in a probabilistic sense, until the clusters are formed. A novel aspect of the paper is the method proposed for dealing with this uncertainty. The problem is modelled using a compact set-covering formulation and is solved with an adaptive column generation heuristic. Because it is not possible to efficiently represent all the constraints in algebraic form, thus allowing a Dantzig-Wolfe decomposition, a constructive approach was taken. The first step involved generating a subset of attractive clusters from seed customers scattered throughout the service region and then iteratively pricing them out to obtain a relaxed solution to the set-covering model. To find integer solutions, a three-phase variable fixing scheme was designed with the aim of balancing solution quality with runtimes. The full methodology was tested on six data sets provided by an internationally known express package carrier. The results showed that vehicle reductions averaging 7.6% could be realized by adopting the configurations derived from the proposed approach.  相似文献   

18.
This paper deals with the problem of finding the optimal assignment of given periodical demands over a planning horizon, so that a suitable objective function will be minimized. All deliveries are concentrated into one time unit for each of their time periods and they are located by the central decision maker in order to satisfy given constraints. The objective function considered is the minimization of the capacity of the production center which must satisfy the demands.  相似文献   

19.
We consider a manufacturer facing single period inventory planning problem with uncertain demand and multiple options of expediting. The demand comes at a certain time in the future. The manufacturer may order the product in advance with a relatively low cost. She can order additional amount by expediting after the demand is realized. There are a number of expediting options, each of which corresponds to a certain delivery lead time and a unit procurement price. The unit procurement price is decreasing over delivery lead time. The selling price is also decreasing over time. In this paper, we assume that the manufacturer must deliver all products to the customer in a single shipment. The problem can be formulated as a profit maximization problem. We develop structural properties and show how the optimal solution can be identified efficiently. In addition, we compare our model with the classical newsvendor model and obtain a number of managerial insights.  相似文献   

20.
A stochastic inventory routing problem (SIRP) is typically the combination of stochastic inventory control problems and NP-hard vehicle routing problems, which determines delivery volumes to the customers that the depot serves in each period, and vehicle routes to deliver the volumes. This paper aims to solve a large scale multi-period SIRP with split delivery (SIRPSD) where a customer??s delivery in each period can be split and satisfied by multiple vehicle routes if necessary. This paper considers SIRPSD under the multi-criteria of the total inventory and transportation costs, and the service levels of customers. The total inventory and transportation cost is considered as the objective of the problem to minimize, while the service levels of the warehouses and the customers are satisfied by some imposed constraints and can be adjusted according to practical requests. In order to tackle the SIRPSD with notorious computational complexity, we first propose an approximate model, which significantly reduces the number of decision variables compared to its corresponding exact model. We then develop a hybrid approach that combines the linearization of nonlinear constraints, the decomposition of the model into sub-models with Lagrangian relaxation, and a partial linearization approach for a sub model. A near optimal solution of the model found by the approach is used to construct a near optimal solution of the SIRPSD. Randomly generated instances of the problem with up to 200 customers and 5 periods and about 400 thousands decision variables where half of them are integer are examined by numerical experiments. Our approach can obtain high quality near optimal solutions within a reasonable amount of computation time on an ordinary PC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号