首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanical properties of glass bead filled low density polyethylene (LDPE) composites in tension have been investigated by using an Instron material testing machine. It is found that with increase of the glass bead weight fraction (φ) the tensile modulus (Ec) and the tensile yield stress (σyc) increase as a form of nonlinear function but contrary to the elongation strain at break; the correlation between Ec and φ accords with the logarithmic mixing rule and the relationship between σy and the volume fraction (φf) can be described by means of a second order equation; the effects of the glass bead diameter on the mechanical properties are not large; when φ and the bead size are suitable, the enhanced toughness effect of the filled-systems is more significant; the tensile strength of the glass bead filled system pretreated with a coupling agent are somewhat greater than those of the untreated system. In addition, the morphology of the samples is studied to explain the relationship between the micro-structure and the mechanical properties of the composites.  相似文献   

2.
The fracture toughness of impact modified polypropylene (PP) with impact modifier (IM) content up to 30 wt% was measured under quasi-static and impact rates of loading. Three types of IMs were employed in this work, which were all PP/PE based copolymers. Under quasi-static rate of loading, the fracture toughness for blends containing 30 wt% of IM were measured using the specific essential work of fracture (we) and the J-integral via the locus method (Jc). Both methods gave similar values of fracture toughness. Furthermore, the type of impact modifier used does not have a strong influence on the we (or Jc) value. The main difference between the three blends is the plastic work term (βwp). Using the specific essential work of fracture approach, no plane stress–plane strain transition can be observed. For impact rate of loading, the dynamic Gc and the Izod impact strength for blends containing 10–30 wt% of IM were measured. All the blends failed in a brittle or semi-brittle manner. In general, Gc increases with IM concentration.  相似文献   

3.
This study investigated the dynamic mechanical properties of hybrid intraply carbon/E-glass epoxy composites with different orientations and stacking sequences under different loading conditions with increasing temperature. A neat epoxy and five various hybrid composites such as Carbon (0°)/E-glass (90°), Carbon (45°)/E-glass (135°), Carbon (90°)/E-glass (0°), Carbon/E-glass (alternating layer), and Carbon/E-glass (alternating layer 45°) were manufactured. Three-point bending test and dynamic mechanical test were conducted to understand the flexural modulus and viscoelastic behavior (storage modulus, loss modulus, and loss tangent) of the composites. Dynamic mechanical test was performed with the dual cantilever method, at four different frequencies (1, 5, 10, and 20 Hz) and temperatures ranging from 30 to 150°C. The experimental results of storage modulus, loss modulus, and loss tangents were compared with the theoretical findings of neat epoxy and various hybrid composites. The glass transition temperature (Tg) increased with the increase in frequency. A linear fit of the natural log of frequency to the inverse of absolute temperature was plotted in the activation energy estimation. The interphase damping (tanδi) between plies and the strength indicator (Si) of the hybrid composites were estimated. It was observed that the neat epoxy had more insufficient storage and loss modulus and a high loss tangent at all the frequencies whereas hybrid composites had high storage and loss modulus and a low loss tangent for all the frequencies. Compared with other hybrid composites, Carbon (90°)/E-glass (0°) had higher strength and activation energy. The result of reinforcement of hybrid fiber in neat epoxy significantly increases the material's strength and stability at higher temperatures whereas decreasing free molecular movement.  相似文献   

4.
《先进技术聚合物》2018,29(2):982-988
Shape‐memory polymers are important smart materials with potential applications in smart textiles, medical devices, and sensors. We prepared trans‐1,4‐polyisoprene, low‐density polyethylene (LDPE), and high‐density polyethylene (HDPE) shape‐memory composites using a simple mechanical blend method. The mechanical, thermal, and shape‐memory properties of the composites were studied. Our results showed that the shape‐memory composites could memorize 3 temporary shapes, as revealed by the presence of broad melting transition peaks in the differential scanning calorimetry curves. In the trans‐1,4‐polyisoprene/LDPE/HDPE composites, the cross‐linked network and the crystallization of the LDPE and HDPE portions can serve as fixed domains, and all crystallizations can act as reversible domains. We proposed a schematic diagram to explain the vital role of the cross‐linked network and the crystallization in the shape‐memory process.  相似文献   

5.

Bamboo-/kenaf-reinforced epoxy hybrid composites were prepared by hand layup method. The aim of this study is to look into the hybridization effect of bamboo and kenaf fibers at different ratios on thermal and thermo-oxidative (TOD) stabilities of hybrid composites. Three types of hybrid composites were fabricated with different mass ratios of bamboo fiber mat (B) to kenaf fiber mat (K), namely B/K 70:30, B/K 50:50 and B/K 70:30 while maintaining total fiber loading of 40% by mass. The thermal stability and thermo-oxidative (TOD) stability were analyzed by thermogravimetric analyzer. Differential scanning calorimetry (DSC) was used to investigate the oxidation onset temperature (OOT) of all the composites. The results reveal that bamboo composite shows higher thermal stability than kenaf composite in both inert and oxidative atmospheres. An increase in bamboo fibers mass ratio in the hybrid composite improved the thermal and TOD stability. The thermal and TOD stabilities of the hybrid composites follow the sequence of B/K 70: 30?>?B/K 50:50?>?B/K 30:70. Pure epoxy composite recorded the highest OOT at 197.50 °C. The results show that the addition of natural fiber in the epoxy matrix has significantly reduced the OOT compared to the pure epoxy. Data obtained from this work will help us to fabricate a sustainable and biodegradable component for automotive or building materials.

  相似文献   

6.
Journal of Solid State Electrochemistry - Polypyrrole(PPy)/BiOCl hybrid composites were synthesized for the first time via one-step chemical oxidation process by addition of Bi2O3 nanoparticle in...  相似文献   

7.
PE chains can proceed template crystal growth on multi‐walled carbon nanotubes (MWCNTs) surface and develop into hybrid shish‐kebab (HSK) abiding by the “soft epitaxy” mechanism. For large‐diameter carbon nanofiber (CNF), the lattice matching and epitaxy are the main mechanism for hybrid structure formation under the static state. This study provided a new understanding of HSK formation, wherein PE underlay on the surface of carbon material fiber played an important role. The shear flow induced PE chains to orient along the CNF surface and formed PE underlayer. Subsequently, ordered subglobules were periodically formed along the CNF axis and finally evolved to typical HSK structures with well‐aligned arraying PE lamellae rather than random one. As the diameter increased to 7000 nm, even though the graphite (002) planes in carbon fibers (CFs) was similar to that in CNFs, the attractive van der Waals interactions between CFs and PE chains were too weak to drive enough PE chains to absorb on the CFs surface and form PE underlay even under the shear flow, leading to the absence of PE lamellae on the CF surface. Based on that, the “soft epitaxy” could be the main formation mechanism of HSK structures for carbon material fibers regardless of their diameters. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 297–303  相似文献   

8.
A microscopic Potts-like one-dimensional model with many particle interactions [referred as the generalized model of polypeptide chains (GMPCs)] is developed to investigate cooperativity of DNA sequence dependent melting. For modeling sequence, regular homogeneous sequences were arranged in heterogeneous blocks of various lengths. Within the framework of the GMPC the authors show that the inclusion of stacking interaction heterogeneity relative to homogeneous hydrogen bond interactions leads to an unexpected and quite remarkable increase in melting cooperativity for small blocks. In some cases this tendency persists for long blocks having sharp sequence heterogeneity.  相似文献   

9.
New polyoxometalate (POM)/polymer hybrid composites were prepared by photopolymerization under mild conditions for suitable photocatalytic processes. Polyoxometalates were incorporated in special photosensitive resins, which were photopolymerized under visible light to obtain new materials with photocatalytic activity for dye removal. The synthesized composites were characterized by real‐time FT‐IR, and the photocatalytic ability was investigated on Eosin‐Y removal using photolysis under near UV irradiation. Interestingly, the polyoxometalates keep their photocatalytic properties, while incorporated into the polymeric matrix since very high conversion rates of Eosin‐Y were achieved. Indeed, degradation efficiencies of about 98% and 93% were registered when using H3PMo12O40/polymer and 94% for SiMo12O40(IPh2)4/polymer composites, respectively. These first results reported in this article show that the new synthesized POM/polymer composites could be considered as promising materials for green and more suitable organic dye removal from aqueous solutions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1538–1549  相似文献   

10.
Unidirectional hybrid laminates based on glass fibers (GF) and high performance polyethylene fibers (PEF) were prepared with a partially polymerized methyl methacrylate (MMA) matrix at room temperature followed by heating at 55°C for the stipulated time (well below the softening point of PEF). The ultimate flexural strength (UFS), flexural modulus (FM) and interlaminar shear strength (ILSS) of the composites were determined and analyzed. An interesting observation of the study was the change in flexural behavior, which was largely dependent on the position of GF and PEF ply/plies in the compression and tension sides. When the ply/plies of PEF were at the tension side, the UFS and FM showed a higher value than that when GF plies were in the tension side of the hybrid composites. The ILSS also follows the same trend regarding the position of the GF and PEF plies.  相似文献   

11.
12.
Content     
  相似文献   

13.
Preface     
  相似文献   

14.
15.
The primary focus of the present work was to fabricate and characterize hybrid epoxy composites using jute and murta bast fibers. Murta and jute fibers with lengths of 35 mm each were mixed randomly with a polymer matrix by varying their relative amounts but keeping the total weight of the fiber mixture fixed at 30%. The hybrid composites were characterized based on values obtained from the experiments carried out to assess properties such as density, thermal stability, water absorption/retention, tensile/flexural/compressive/impact strengths, and hardness. The composite containing equal amounts of the two fibers exhibits synergism and superior properties.  相似文献   

16.
17.
The results of thermal conductivity study of epoxy–matrix composites filled with different type of powders are reported. Boron nitride and aluminum nitride micro‐powders with different size distribution and surface modification were used. A representative set of samples has been prepared with different contents of the fillers. The microstructure was investigated by SEM observations. Thermal conductivity measurements have been performed at room temperature and for selected samples it was also measured as a function of temperature from 300 K down to liquid helium temperatures. The most spectacular enhancement of the thermal conductivity was obtained for composites filled with hybrid fillers of boron nitride–silica and aluminum nitride–silica. In the case of sample with 31 vol.% of boron nitride–silica hybrid filler it amounts to 114% and for the sample with 45 vol.% of hybrid filler by 65% as compared with the reference composite with silica filler. However, in the case of small aluminum nitride grains application, large interfacial areas were introduced, promoting creation of thermal resistance barriers and causing phonon scattering more effective. As a result, no thermal conductivity improvement was obtained. Different characters of temperature dependencies are observed for hybrid filler composites which allowed identifying the component filler of the dominant contribution to the thermal conductivity in each case. The data show a good agreement with predictions of Agari‐Uno model, indicating the importance of conductive paths forming effect already at low filler contents. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A series of ab initio calculations are used to determine the C? H???π and π???π‐stacking interactions of aromatic rings coordinated to transition‐metal centres. Two model complexes have been employed, namely, ferrocene and chromium benzene tricarbonyl. Benchmark data obtained from extrapolation of MP2 energies to the basis set limit, coupled with CCSD(T) correction, indicate that coordinated aromatic rings are slightly weaker hydrogen‐bond acceptors but are significantly stronger hydrogen‐bond donors than uncomplexed rings. It is found that π???π stacking to a second benzene is stronger than in the free benzene dimer, especially in the chromium case. This is assigned, by use of energy partitioning in the local correlation method, to dispersion interactions between metal d and benzene π orbitals. The benchmark data is also used to test the performance of more efficient theoretical methods, indicating that spin‐component scaling of MP2 energies performs well in all cases, whereas various density functionals describe some complexes well, but others with errors of more than 1 kcal mol?1.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号