首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
介孔材料MCM-41上汽油吸附深度脱硫   总被引:14,自引:0,他引:14  
 研究了不同硅铝比的MCM-41介孔材料作为吸附剂对模型汽油以及真实FCC汽油的脱硫性能. 结果表明,在室温和常压下,MCM-41介孔材料对模型溶液中噻吩的吸附随着吸附剂中铝含量的增加而显著提高. 吡啶吸附的红外光谱显示,噻吩吸附容量的提高与吸附材料酸性的明显增大有直接关系. 但在对FCC汽油的吸附脱硫实验中,随着MCM-41中铝含量的提高,脱硫率并未增大. 这主要是由于在FCC汽油中存在大量性质与噻吩类含硫化合物十分相近的芳烃和烯烃,竞争吸附导致MCM-41对有机硫化物的吸附能力显著降低.  相似文献   

2.
介孔硅铝酸盐吸附剂的柴油吸附脱硫研究   总被引:2,自引:0,他引:2  
制备了一种微孔和介孔复合的硅铝酸盐吸附剂(MAS),研究了其柴油吸附脱硫性能.利用Y型分子筛的前驱体合成了MAS,考察了合成过程中表面活性剂浓度、晶化时间和焙烧温度等参数对吸附剂脱硫效果的影响.利用过渡金属离子对吸附剂进行了改性,并在固定床中进行了柴油吸附脱硫研究.结果表明,不同吸附剂对柴油的脱硫效果是MAS〉MCM-41〉NaY,金属离子Cu+、Ag+改性都能提高吸附剂的脱硫性能,Cu+的效果更好.  相似文献   

3.
改性Y型分子筛的吸附脱硫性能以及苯,萘对吸附的影响   总被引:2,自引:0,他引:2  
采用离子交换法制备了经金属离子改性的Y型分子筛吸附剂, 并用XRF, XRD, XPS对吸附剂的化学组成, 晶相结构等进行了表征. 以含噻吩, 苯并噻吩的辛烷溶液为模型燃料考察了吸附剂的吸附脱硫性能以及苯, 萘对脱硫的影响. 结果表明, Cu(Ⅰ)Y, CuZnY具有较大的吸附容量, 而苯对苯并噻吩吸附脱除性能几乎没有影响, 但对噻吩的吸附性能影响较大, 萘对苯并噻吩和噻吩的脱除都有较大的抑制作用. 并由此推测, 吸附剂与苯并噻吩或萘的结合比噻吩或苯更紧密, 吸附的机理是π络合.  相似文献   

4.
本文从基础研究的角度出发,以红外光谱技术为主要研究手段,以噻吩为汽油馏分中含硫有机分子的模型化合物,首次给出了噻吩分子在吸附剂表面的吸附方式和吸附位,以及芳烃对噻吩吸附的影响等红外光谱信息.为避免吸附剂的强酸性可能引起的干扰,采用NaY分子筛为原料进行液相离子交换制备吸附剂.  相似文献   

5.
利用MCM-41形成过程中协同自组装的特点,在合成过程中引入Cu(NH3)42+,制备出过渡金属表面修饰的纯硅介孔分子筛Cu-MCM-41,采用XRD,ICP,ESR,N2吸附等手段确定Cu处于MCM-41的表面,取代了端羟基中氢的位置,与骨架桥氧和硅羟基中的氧配位.利用苯酚羟化反应为探针,考察了Cu-MCM-41的催化活性.结果表明,Cu-MCM-41具有很高的苯酚羟化活性,与TS-1分子筛的催化效果相当,对萘酚的羟化活性也较高.  相似文献   

6.
采用吡啶原位吸附傅里叶变换红外(Py-FTIR)光谱对液相离子交换(LPIE)和固相离子交换(SSIE)法制备的CeY分子筛以及HY和NaY的酸性进行了测定. 在原位条件下采用单探针分子噻吩、环己烯和苯对其在分子筛上的吸附过程进行了研究; 以噻吩和环己烯、噻吩和苯组成的双探针分子对吸附过程中存在的竞争吸附、催化反应以及吸附机理进行了系统研究. 结果表明, HY和L-CeY 分子筛表面强Brönsted (B)酸性位可导致吸附在其表面的噻吩发生低聚反应以及吸附的环己烯产生二聚环己烯碳正离子. 低聚的噻吩和吸附的环己烯在分子筛上发生强的化学吸附, 进一步抑制和阻碍噻吩硫化物与分子筛吸附活性中心发生作用, 从而降低了吸附剂的选择性以及吸附硫化物的能力. 吸附剂表面Lewis (L)酸中心是吸附的主要活性中心, 大量弱的L 酸, 有利于噻吩吸附. 并且, S-CeY分子筛表面弱的L酸对吸附噻吩具有一定的选择性, 它受到环己烯的影响较小, NaY吸附剂对噻吩、环己烯和苯选择性较差, 它只与吸附质作用的先后有关.  相似文献   

7.
采用液相离子交换(LPIE)法制备了CeY分子筛,并研究烯烃和芳烃对其吸附脱硫性能的影响.利用固定床穿透曲线技术研究吸附剂的脱硫性能,结果表明:烯烃和芳烃的存在均导致吸附剂吸附硫容量减少,然而,烯烃的影响明显强于芳烃.采用原位傅里叶变换红外(FTIR)光谱技术研究噻吩、环己烯和苯的吸附行为,结果发现:烯烃和芳烃降低吸附剂脱硫性能的实质分别为吸附剂表面酸性导致的酸催化反应和π-络合吸附的芳烃分子与硫化物分子的竞争吸附.另外,烯烃的影响取决于吸附剂的表面酸性,尤其是强B酸(Br?nsted酸)中心.这是由于B酸中心会导致烯烃和噻吩发生质子化反应,且质子化物种易于进一步发生低聚反应.生成的低聚物覆盖吸附活性中心导致吸附剂对其它噻吩分子的吸附能力降低.  相似文献   

8.
采用液相离子交换(LPIE)法制备了CeY分子筛,并研究烯烃和芳烃对其吸附脱硫性能的影响. 利用固定床穿透曲线技术研究吸附剂的脱硫性能,结果表明:烯烃和芳烃的存在均导致吸附剂吸附硫容量减少,然而,烯烃的影响明显强于芳烃. 采用原位傅里叶变换红外(FTIR)光谱技术研究噻吩、环己烯和苯的吸附行为,结果发现:烯烃和芳烃降低吸附剂脱硫性能的实质分别为吸附剂表面酸性导致的酸催化反应和π-络合吸附的芳烃分子与硫化物分子的竞争吸附. 另外,烯烃的影响取决于吸附剂的表面酸性,尤其是强B酸(Brönsted 酸)中心.这是由于B酸中心会导致烯烃和噻吩发生质子化反应,且质子化物种易于进一步发生低聚反应. 生成的低聚物覆盖吸附活性中心导致吸附剂对其它噻吩分子的吸附能力降低.  相似文献   

9.
噻吩在猝冷骨架Ni上吸附脱硫的XPS研究   总被引:1,自引:0,他引:1  
采用X射线光电子能谱(XPS)研究了室温下噻吩在猝冷骨架Ni吸附剂上的吸附及受热分解行为. 研究结果表明, 298 K时噻吩首先在吸附剂表面发生C—S键断裂, 生成原子硫及含金属的有机环状化合物. 当吸附剂表面完全被解离物种覆盖后, 发生噻吩的多层物理吸附. 加热至373 K, 大部分物理吸附的噻吩直接脱附, 其余部分在碳物种脱附后暴露的Ni表面上发生解离. 473 K时表面的碳物种消失, 而残留在样品上的硫均转化为硫化镍.   相似文献   

10.
通过固定床吸附实验考察了吸附剂的粒径、空速与浓度及床层温度等操作参数对苯中噻吩吸附的影响。结果表明,上述因素分别通过改变内、外扩散过程的传质阻力以及其物理吸附行为来影响噻吩的脱除。最佳的参数是,吸附剂粒径为0.2~0.3 mm,空速为0.85 h-1,床层温度为室温。在此条件下,CeY吸附剂能将噻吩浓度为500 mg/L苯溶液中的噻吩完全脱除,其噻吩的穿透时间和吸附量可达400 min和4.61 mg/g以上。  相似文献   

11.
活性炭液相吸附去除噻吩硫化物的研究   总被引:2,自引:4,他引:2  
迄今为止,国内外降低汽油硫含量的方法主要有原料加氢脱硫、汽油加氢脱硫、溶剂抽提脱硫、催化裂化脱硫、氧化脱硫、生物脱硫、吸附脱硫及组合技术,同时一些非常规技术如膜过程脱硫、等离子体和光脱硫也在积极探索之中。  相似文献   

12.
采用浸渍法制备了四氟硼酸(HBF4)改性活性炭,并研究了其对模拟油中二苯并噻吩(DBT)的吸附脱除性能。利用傅里叶红外光谱(FT-IR)、差示热分析仪(TG-DTA)、X射线光电子能谱(XPS)以及N2吸附技术对吸附剂的表面态和孔结构进行了表征,考察了四氟硼酸浓度、热处理温度以及模拟油中DBT浓度对吸附脱硫效果的影响。结果表明,经质量分数0.5%的HBF4溶液浸渍、140 ℃热处理后,在剂油比1:100条件下,活性炭的吸附容量为352 mg/g,较未改性活性炭提高了72.5%。  相似文献   

13.
以硅胶(SG)为吸附剂,采用自制的双亲催化剂与H2O2组成的催化氧化体系将柴油进行氧化,利用固定床动态吸附法考察了硅胶性质、氧化过程及吸附条件等对硅胶吸附脱硫性能的影响,并对硅胶进行了表征。小角XRD和氮气吸脱附结果表明,实验所用硅胶具有介孔结构。吸附脱硫实验结果表明,在油剂比(柴油与吸附剂的体积比)相同时,氧化-吸附脱硫过程脱硫率明显高于吸附脱硫过程脱硫率;选用硅胶作吸附剂,吸附温度为40℃,吸附空速为6.0 h-1时脱硫效果较好,当油剂比为1时,脱硫率高达94.57%,且该介孔硅胶具有较大的吸附硫容,随油剂比增大下降缓慢,当油剂比增大到15时,脱硫率仍达85.89%。  相似文献   

14.
以不同焙烧温度和Ce负载量的CeY分子筛为研究对象,运用XRD及N_2吸附表征其织构性质;运用吡啶吸附红外光谱法剖析了分子筛中活性位的化学属性;采用固定床评价其对噻吩模拟油的吸附脱硫性能及芳烃和烯烃对噻吩脱除的影响;并结合红外光谱和GC-SCD技术分析了其脱硫机制。结果表明,CeY样品经150℃焙烧后,其超笼中具备高含量的B酸和Ce羟基化物种活性位,两者协同增强了噻吩低聚反应能力,进而提高了其吸附穿透硫容量(18.45 mg (S)/g);而提升焙烧温度和Ce负载量会严重降低其有效活性位的数量,削弱了噻吩低聚反应能力,其吸附穿透硫容量显著减小(4.03 mg (S)/g)。当加入烯烃和芳烃后,CeY-12.3-150吸附剂对含低浓度(质量分数)1-己烯(1.0%)和苯(0.1%)的噻吩模拟油依旧保持较高吸附穿透硫容量;但随两者含量的持续增加,其硫容量急剧下降。其主要分别归因于噻吩烷基化反应的发生及“S-H”键的作用模式。  相似文献   

15.
以硝酸钴为钴源,采用水热法合成了MCM-41和不同Co含量的Co-MCM-41分子筛,并利用XRD、FT-IR和低温N2吸附-脱附等方法对合成的分子筛进行表征。当加入的Co/Si物质的量比达到0.1时,依然能够成功合成具有规整有序的介孔结构的Co-MCM-41。MCM-41和Co-MCM-41静态吸附脱除0#柴油中碱氮的实验结果表明,Co/Si物质的量比为0.06的Co-MCM-41(2)分子筛的吸附容量最大,达到5.324 mg(N)/g分子筛,明显高于MCM-41分子筛的吸附容量2.532 mg(N)/g,说明Co进入MCM-41分子筛骨架后显著提高了分子筛的吸附脱除碱氮能力。当加入的Co/Si物质的量比大于0.06时,分子筛吸附脱除柴油中碱氮的能力反而下降,这是由于加入过多Co会使其以Co3O4形式高度分散在分子筛孔道中,堵塞了吸附活性位,使其无法与碱性氮化物接触造成吸附脱氮能力下降。动态吸附脱除0#柴油中碱性氮化物的结果表明,每克CoM CM-41(2)分子筛可将35 m L柴油的碱氮从147.54μg/g吸附脱除到10μg/g以下,吸附容量为4.2 mg(N)/g(吸附剂),由于动态吸附的接触时间较短使MCM-41失去了吸附脱氮能力,说明Co-MCM-41(2)对柴油中的碱氮具有较好的选择性。  相似文献   

16.
The need for a sustainable environment has necessitated the development of a green adsorbent that is efficient, cheap, and readily available to serve as an alternative adsorbent for the removal of the refractory sulfur-containing compound from diesel. In this current study, neem-leaf powder (NLP) was activated using H2SO4 and tested in desulfurization adsorption experiments of synthetic diesel containing Dibenzothiopene (DBT) during a batch operation. The synthetic diesel contained 0.1 g of DBT in 100 mL of hexane. Before testing, physio-chemical characteristics of the adsorbent were checked via Fourier transmission infrared (FTIR) spectroscopy for surface chemistry; via N2 physisorption at 77 K for textural properties; SEM quipped with EDX for morphology and elemental composition; and XRD for purity and crystallinity. The results showed that the physico-chemical nature of the adsorbent played a significant role in enhancing the adsorption capacity of the material for DBT. Activated NLP displayed DBT removal of 65.78% at 30 °C using 0.8 g of the adsorbent. Furthermore, the behaviour of the adsorbent during the adsorption could be adequately described using the Freundlich isotherm model. Pseudo-first-order and pseudo-second-order kinetics model describe well the adsorption kinetics of DBT onto the activated NLP.  相似文献   

17.
新型肌酐吸附剂的研究   总被引:4,自引:0,他引:4  
以玉米淀粉和 3 ,5 二硝基苯甲酰氯为原料合成了一种新型肌酐吸附剂并采用红外光谱、元素分析、核磁共振等手段对产物化学结构进行了表征 ,考察了 3 ,5 二硝基苯甲酸淀粉酯对肌酐的静态吸附性能 ,建立了 3 ,5 二硝基苯甲酸与肌酐络合产物的结构模型 ,初步探索了 3 ,5 二硝基苯甲酸淀粉酯对肌酐吸附机理 .结果表明 ,3 ,5 二硝基苯甲酸淀粉酯对肌酐有较好的吸附性能 ,吸附在 4h内完成 ,吸附容量随 3 ,5 二硝基苯甲酸淀粉酯的取代度的增大而提高 ;在肌酐溶液浓度为 0~ 3 0 0mg·L- 1 ,吸附容量亦随肌酐浓度增大而提高 ;吸附温度从 1 9℃升高到 3 7℃时 ,吸附容量呈现降低的趋势 ;吸附容量随溶液pH值的增长呈现先增加后降低的趋势 ,在pH =8左右达到最大 ;在肌酐溶液浓度为 1 0 0mg·L- 1 、吸附温度为 3 7℃、介质pH =7的条件下 ,3 ,5 二硝基苯甲酸淀粉酯对肌酐的最大吸附量达 2 5mg·g- 1 .  相似文献   

18.
苯并噻吩在酸改性NaY分子筛上的吸附   总被引:1,自引:0,他引:1  
以NaY分子筛为母体,通过柠檬酸、磷酸改性分别得到吸附剂NaY-C和NaY-P.采用SEM、XRD、XRF、N2物理吸附及NH3-TPD表征可知,柠檬酸改性后得到的NaY-C吸附剂介孔表面积增加,分子筛骨架结构保持不变.同时,磷酸改性使得NaY分子筛表面弱酸量减少强酸量增加,改性后所得吸附剂NaY-P的强酸量大于NaY-C.吸附实验表明,NaY-C和NaY-P均可完全脱除模拟油品中的苯并噻吩,同时NaY-C吸附剂对0#柴油的脱硫能力优于NaY-P吸附剂.再生实验中NaY-C和NaY-P吸附剂对模拟油品的脱硫率由第一次的100%分别下降至第6次的91.97%和85.96%.由此可知,柠檬酸改性NaY分子筛所得NaY-C吸附剂的脱硫能力优于NaY-P,原因是吸附剂上的介孔更易于发生吸附脱硫.  相似文献   

19.
以NaY分子筛为载体,通过液相离子交换法制备了经Ag、Ce双金属离子改性的AgCeY吸附剂,并利用UV-vis、XRD、BET、ICP、XPS和FT-IR技术对吸附剂进行了表征。以噻吩/苯并噻吩/正辛烷/甲苯体系为汽油模拟体系,考察了制备条件和吸附条件对吸附剂脱硫性能的影响以及吸附剂再生性能。结果表明,AgCeY吸附剂上Ag、Ce这两种金属元素分别以Ag+、Ce4+形式存在,AgCeY吸附剂具有类似于AgY的高的脱硫性能,又具有类似于CeY的高的吸附选择性,AgCeY对噻吩(TP)和苯并噻吩(BT)的吸附选择性顺序为BT > TP;最适宜的制备条件为先交换Ag后交换Ce离子、离子交换24 h、Ce/Ag物质的量比为2.5、500 ℃焙烧;在原料20 mL、AgCeY吸附剂用量0.2 g、吸附温度50 ℃、吸附时间60 min下,噻吩脱硫率可达到59.0%,苯并噻吩脱硫率达到96.5%。  相似文献   

20.
Thermogravimetric analysis and differential scanning calorimetry have been applied to determine the adsorption of oil on selected adsorbates: sand, organo-clay and raw cotton. Thermal analysis provides evidence for the interaction and physical adsorption of the diesel oil on the adsorbates. Sand adsorbed diesel to around 33% by mass through weak physical interactions and appeared to fractionate the diesel components. The organo-clays more strongly adsorbed the diesel as evidenced by higher thermal decomposition temperatures. Differential scanning calorimetry (DSC) shows a strong interaction between the organo-clay and the diesel oil. Diesel is effectively adsorbed on organo-clay through adsorption and partitioning and is not removed from the organo-clay until significantly higher temperatures. Cotton displayed a very high adsorption/absorption capacity. A shift in the peak at 110°C (compared with pure diesel at 90°C) suggests an interaction between the diesel compounds and the cotton fibres as diesel is being retained at higher temperatures and more energy is required to evaporate the diesel. DSC was used to determine the strength of the diesel adsorption on the sand, organo-clay and cotton. The use of adsorbent materials to adsorb oil from oil spills is of great significance in modern society. One method of proving the effectiveness of an adsorbent material is through thermoanalytical techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号