首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
We show from first principles the emergence of classical Boltzmann equations from relativistic nonequilibrium quantum field theory as described by the Kadanoff–Baym equations. Our method applies to a generic quantum field, coupled to a collection of background fields and sources, in a homogeneous and isotropic spacetime. The analysis is based on analytical solutions to the full Kadanoff–Baym equations, using the WKB approximation. This is in contrast to previous derivations of kinetic equations that rely on similar physical assumptions, but obtain approximate equations of motion from a gradient expansion in momentum space. We show that the system follows a generalized Boltzmann equation whenever the WKB approximation holds. The generalized Boltzmann equation, which includes off-shell transport, is valid far from equilibrium and in a time dependent background, such as the expanding universe.  相似文献   

2.
Thermal leptogenesis is an attractive mechanism that explains in a simple way the matter-antimatter asymmetry of the universe. It is usually studied via the Boltzmann equations, which describes the time evolution of particle densities or distribution functions in a thermal bath. The Boltzmann equations are classical equations and suffer from basic conceptual problems and they lack to include many quantum phenomena. We show how to address leptogenesis systematically in a purely quantum way, by describing non-equilibrium excitations of a Majorana particle in the Kadanoff-Baym equations with significant emphasis on the initial and boundary conditions of the solutions. We apply our results to thermal leptogenesis, computing analytically the asymmetry generated, comparing it with the semiclassical Boltzmann approach. The non-locality of the Kadanoff-Baym equations shows how off-shell effects can have a huge impact on the generated asymmetry. The insertion of standard model decay widths to the particles excitations of the bath is also discussed. We explain how with a trivial insertion of these widths we regain locality on the processes.  相似文献   

3.
We study the dynamics of relaxation and thermalization in an exactly solvable model of a particle interacting with a harmonic oscillator bath. Our goal is to understand the effects of non-Markovian processes on the relaxational dynamics and to compare the exact evolution of the distribution function with approximate Markovian and non-Markovian quantum kinetics. There are two different cases that are studied in detail: (i) a quasiparticle (resonance) when the renormalized frequency of the particle is above the frequency threshold of the bath and (ii) a stable renormalized "particle" state below this threshold. The time evolution of the occupation number for the particle is evaluated exactly using different approaches that yield to complementary insights. The exact solution allows us to investigate the concept of the formation time of a quasiparticle and to study the difference between the relaxation of the distribution of bare particles and that of quasiparticles. For the case of quasiparticles, the exact occupation number asymptotically tends to a statistical equilibrium distribution that differs from a simple Bose-Einstein form as a result of off-shell processes whereas in the stable particle case, the distribution of particles does not thermalize with the bath. We derive a non-Markovian quantum kinetic equation which resums the perturbative series and includes off-shell effects. A Markovian approximation that includes off-shell contributions and the usual Boltzmann equation (energy conserving) are obtained from the quantum kinetic equation in the limit of wide separation of time scales upon different coarse-graining assumptions. The relaxational dynamics predicted by the non-Markovian, Markovian, and Boltzmann approximations are compared to the exact result. The Boltzmann approach is seen to fail in the case of wide resonances and when threshold and renormalization effects are important.  相似文献   

4.
Gradient expansions in quantum transport equations of a Kadanoff-Baym form have been reexamined. In a consistent approach the expansion should be performed also inside the self-energy in the scattering integrals of these equations. In the first perturbation order this internal expansion gives new correction terms to the generalized Boltzmann equation. These correction terms are found here for several typical systems. Possible corrections to the theory of a linear response to weak electric fields are also discussed.  相似文献   

5.
Despite the many successes of the relativistic quantum theory developed by Horwitz et al., certain difficulties persist in the associated covariant classical mechanics. In this paper, we explore these difficulties through an examination of the classical. Coulomb problem in the framework of off-shell electrodynamics. As the local gauge theory of a covariant quantum mechanics with evolution paratmeter τ, off-shell electrodynamics constitutes a dynamical theory of ppacetime events, interacting through five τ-dependent pre-Maxwell potentials. We present a straightforward solution of the classical equations of motion, for a test event traversing the field induced by a “fixed” event (an event moving uniformly along the time axis at a fixed point in space). This solution is seen to be unsatisfactory, and reveals the essential difficulties in the formalism at the classical levels. We then offer a new model of the particle current—as a certain distribution of the event currents on the worldline—which eliminates these difficulties and permits comparison of classisical off-shell electrodynamics with the standard Maxwell theory. In this model, the “fixed” event induces a Yukawa-type potential, permitting a semiclassical identification of the pre-Maxwell time scale λ with the inverse mass of the intervening photon. Numerical solutions to the equations of motion are compared with the standard Maxwell solutions, and are seen to coincide when λ≳10−6 seconds, providing an initial estimate of this parameter. It is also demonstrated that the proposed model provides a natural interpretation for the photon mass cut-off required for the renormalizability of the off-shell quantum electrodynamics.  相似文献   

6.
The properties of two forms of the gradient expanded Kadanoff-Baym equations, i.e., the Kadanoff-Baym and Botermans-Malfliet forms, suitable for describing the transport dynamics of particles and resonances with broad spectral widths, are discussed in context of conservation laws, the definition of a kinetic entropy, and the possibility of numerical realization. Recent results on exact conservations of charge and energy-momentum within Kadanoff-Baym form of quantum kinetics based on local coupling schemes are extended to two cases relevant in many applications. These concern the interaction via a finite-range potential and, relevant in nuclear and hadron physics, e.g., for the pion-nucleon interaction, the case of derivative coupling.  相似文献   

7.
A. Anisimov 《Annals of Physics》2009,324(6):1234-1260
We study the approach to equilibrium for a scalar field which is coupled to a large thermal bath. Our analysis of the initial value problem is based on Kadanoff-Baym equations which are shown to be equivalent to a stochastic Langevin equation. The interaction with the thermal bath generates a temperature-dependent spectral density, either through decay and inverse decay processes or via Landau damping. In equilibrium, energy density and pressure are determined by the Bose-Einstein distribution function evaluated at a complex quasi-particle pole. The time evolution of the statistical propagator is compared with solutions of the Boltzmann equations for particles as well as quasi-particles. The dependence on initial conditions and the range of validity of the Boltzmann approximation are determined.  相似文献   

8.
9.
The quantum dynamics of the symmetry-broken λ(Φ 2)2 scalar-field theory in the presence of an homogeneous external field is investigated in the large-N limit. We consider an initial thermal state of temperature T for a constant external field J. A subsequent sign flip of the external field, J→ - J, gives rise to an out-of-equilibrium nonperturbative quantum field dynamics. We review here the dynamics for the symmetry-broken λ(Φ 2)2 scalar N component field theory in the large-N limit, with particular stress in the comparison between the results when the initial temperature is zero and when it is finite. The presence of a finite temperature modifies the dynamical effective potential for the expectation value, and also makes that the transition between the two regimes of the early dynamics occurs for lower values of the external field. The two regimes are characterized by the presence or absence of a temporal trapping close to the metastable equilibrium position of the potential. In the cases when the trapping occurs it is shorter for larger initial temperatures.  相似文献   

10.
In this paper the quantum covariant relativistic dynamics of many bodies is reconsidered. It is emphasized that this is an event dynamics. The events are quantum statistically correlated by the global parameter τ. The derivation of an event Boltzmann equation emphasizes this. It is shown that this Boltzmann equation may be viewed as exact in a dilute event limit ignoring three event correlations. A quantum entropy principle is obtained for the marginal Wigner distribution function. By means of event linking (concatenations) particle properties such as the equation of state may be obtained. We further reconsider the generalized quantum equilibrium ensemble theory and the free event case of the Fermi-Dirac and Bose-Einstein distributions, and some consequences. The ultra-relativistic limit differs from the non-covariant theory and is a test of this point of view.  相似文献   

11.
We present a theory for the construction of renormalized kinetic equations to describe the dynamics of classical systems of particles in or out of equilibrium. A closed, self-consistent set of evolution equations is derived for the single-particle phase-space distribution function f, the correlation function C=〈δfδf〉, the retarded and advanced density response functions χ R,A =δf/δφ to an external potential φ, and the associated memory functions Σ R,A,C . The basis of the theory is an effective action functional Ω of external potentials φ that contains all information about the dynamical properties of the system. In particular, its functional derivatives generate successively the single-particle phase-space density f and all the correlation and density response functions, which are coupled through an infinite hierarchy of evolution equations. Traditional renormalization techniques (involving Legendre transform and vertex functions) are then used to perform the closure of the hierarchy through memory functions. The latter satisfy functional equations that can be used to devise systematic approximations that automatically imply the conservation laws of mass, momentum and energy. The present formulation can be equally regarded as (i) a generalization to dynamical problems of the density functional theory of fluids in equilibrium and (ii) as the classical mechanical counterpart of the theory of non-equilibrium Green’s functions in quantum field theory. It unifies and encompasses previous results for classical Hamiltonian systems with any initial conditions. For equilibrium states, the theory reduces to the equilibrium memory function approach used in the kinetic theory of fluids in thermal equilibrium. For non-equilibrium fluids, popular closures of the BBGKY hierarchy (e.g. Landau, Boltzmann, Lenard-Balescu-Guernsey) are simply recovered and we discuss the correspondence with the seminal approaches of Martin-Siggia-Rose and of Rose and we discuss the correspondence with the seminal approaches of Martin-Siggia-Rose and of Rose.  相似文献   

12.
I report on the first application of a novel, generalized Bayesian reconstruction (BR) method for spectral functions to the characterization of QCD constituents. These spectral functions find applications in off-shell kinetics of the quark-gluon plasma and in calculations of transport coefficients. The new BR method is applied to Euclidean propagator data, obtained in Landau gauge on lattices with Nf = 2 + 1 + 1 dynamical flavors by the “twisted mass at finite temperature” (tmfT) collaboration. The deployed reconstruction method is designed for spectral functions that can exhibit positivity violation (opposed to that of hadronic bound states). The transversal and longitudinal gluon spectral functions show a robust structure composed of quasiparticle peak and a negative trough. Characteristic differences between the hadronic and the plasma phase and between the two channels become visible. We obtain the temperature dependence of the transversal and longitudinal gluon masses.  相似文献   

13.
Using a simple model of long-range impurity scattering, we illustrate how different transport and Hall relaxation rates may arise when the electron quasiparticle picture breaks down. We show how a broad and incoherent spectral function requires the use of a quantum version of the Boltzmann equation. This leads to unusual transport properties, in particular, a Hall relaxation rate which is independent of the quasiparticle scattering rate.  相似文献   

14.
A pure dielectric quantum crystal subjected to an external mechanical force is described by non-equilibrium Green’s functions. In equilibrium the leading approximation leads to the definition of elementary excitations, the phonons in the renormalized harmonic approximation. Their temperature dependent energies are to be determined as solutions of an integral equation. For hydrodynamic disturbances a generalized transport equation for a phonon number density is derived. A similar approximation for the spectral function yields an integral equation for space and time dependent quasiparticle energies which are expressed as functionals of the displacement field and the phonon distribution. The Boltzmann equation for the latter includes the quasi-particle interaction.  相似文献   

15.
The growth rate for instabilities in an expanding parton plasma is investigated by using a quasiparticle transport model including hadronization. The coupled Boltzmann equations for partons and pions with time dependent mean field masses and source terms are solved in the Bjorken boost invariant picture. Hadronization modifies the known instability in the parton plasma created by the mean field in two ways: In the beginning, hadronization increases the rate Γ of instability, but then Γ→ 0 when the hadronization is dominating the time evolution. Received: 11 January 1999  相似文献   

16.
17.
18.
V.G. Morozov 《Annals of Physics》2009,324(6):1261-1302
Many-particle QED is applied to kinetic theory of radiative processes in many-component plasmas with relativistic electrons and non-relativistic heavy particles. Within the framework of non-equilibrium Green’s function technique, transport and mass-shell equations for fluctuations of the electromagnetic field are obtained. We show that the transverse field correlation functions can be decomposed into sharply peaked (non-Lorentzian) parts that describe resonant (propagating) photons and off-shell parts corresponding to virtual photons in plasmas. Analogous decompositions are found for the longitudinal field correlation functions and the correlation functions of relativistic electrons. As a novel result a kinetic equation for the resonant photons with a finite spectral width is derived. The off-shell parts of the particle and field correlation functions are shown to be essential to calculate the local radiating power in relativistic plasmas and recover the results of vacuum QED. The influence of plasma effects and collisional broadening of the relativistic quasiparticle spectral function on radiative processes is discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号