首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
为了开展高功率微波(HPM)馈源输出窗介质击穿实验研究,设计了一种组合型X波段高功率微波(HPM)喇叭馈源击穿实验装置。装置采用变张角喇叭与可移动介质输出窗组合的结构,通过调节变张角喇叭口面与输出窗间的距离,使得介质输出窗内表面电场强度可调。数值模拟结果表明:在满足馈源喇叭驻波比小于1.15,E面和H面基本等化的情况下,当调节变张角喇叭口面与介质输出窗距离在0~400 mm范围内变化时,HPM馈源输出窗上的电场强度变化为32.6~87.0 kV·cm-1,满足了在真空度3×10-3 Pa、脉冲宽度20 ns条件下,HPM介质击穿对电场强度变化的要求。根据数值模拟结果,设计加工了HPM介质击穿实验装置,并成功地应用于GW级HPM馈源输出窗介质击穿实验研究。  相似文献   

2.
结合物理光学和几何光学,讨论了高功率微波馈源真空输出窗的形状和厚度的设计方法,给出了一个X波段、脉冲功率容量1.5 GW、外径548 mm、高83.4 mm、厚33.4 mm的高斯馈源聚四氟乙烯碟形真空输出窗的设计实例。在中心频率9.3 GHz时测试输出窗的驻波系数为1.07,驻波系数小于1.24的频带为9%,带介质窗的馈源方向图与不带介质窗的馈源方向图基本一致。应用一维传热学理论对介质窗内部的温度分布进行了分析。冷测结果与理论结果基本一致。  相似文献   

3.
 结合物理光学和几何光学,讨论了高功率微波馈源真空输出窗的形状和厚度的设计方法,给出了一个X波段、脉冲功率容量1.5 GW、外径548 mm、高83.4 mm、厚33.4 mm的高斯馈源聚四氟乙烯碟形真空输出窗的设计实例。在中心频率9.3 GHz时测试输出窗的驻波系数为1.07,驻波系数小于1.24的频带为9%,带介质窗的馈源方向图与不带介质窗的馈源方向图基本一致。应用一维传热学理论对介质窗内部的温度分布进行了分析。冷测结果与理论结果基本一致。  相似文献   

4.
依据数值模拟结果研制了一套X波段多模微波喇叭,采用3次变张角喇叭结构,设计要求辐射功率大于3 GW,E面和H面方向图在10 dB范围内等化度良好,10 dB波束宽度为40°。近场冷测结果表明,H面10 dB波束宽度为43°,E面10 dB波束宽度为40°。远场热测结果表明,H面10 dB波束宽度为40°,E面10 dB波束宽度为41°,在初步测试中,通过对比在线测量结果和辐射场测量结果,证明研制的喇叭输出功率达1.3 GW时不会出现击穿现象。  相似文献   

5.
依据数值模拟结果研制了一套X波段多模微波喇叭,采用3次变张角喇叭结构,设计要求辐射功率大于3 GW,E面和H面方向图在10 dB范围内等化度良好,10 dB波束宽度为40°。近场冷测结果表明,H面10 dB波束宽度为43°,E面10 dB波束宽度为40°。远场热测结果表明,H面10 dB波束宽度为40°,E面10 dB波束宽度为41°,在初步测试中,通过对比在线测量结果和辐射场测量结果,证明研制的喇叭输出功率达1.3 GW时不会出现击穿现象。  相似文献   

6.
7.
讨论了介质物理光学分析方法,并应用该方法数值分析了一个X波段,1.5 GW脉冲功率容量的高斯馈源聚四氟乙烯碟形真空介质输出窗及其辐射场分布。理论计算与实验结果基本一致,从而为优化天线系统打下基础,使用的方法亦可用于厚介质透镜和雷达罩的设计。  相似文献   

8.
为了满足高功率微波系统对微波输出窗高功率容量和紧凑化的应用需求,以传统盒型窗的设计理论为基础,通过优化窗体结构和添加过渡段等手段,设计了一种C波段小型化高功率微波输出窗。通过增大窗体表面积、改变矩形波导-圆波导过渡段的连接方式可提高功率容量并缩小微波输出窗的纵向尺寸;采用“I”型的窗体结构可有效抑制三相点(真空-介质-金属)附近的次级电子倍增效应对输出窗性能的影响。在电磁仿真的基础上采用粒子模拟(Particle-in-Cell)的方法研究了微波输出窗三相点附近的次级电子倍增效应,从微观角度进一步证实了“I”型窗体结构可使三相点位置发生移动,减小三相点发射的电子在窗片表面产生次级电子倍增效应的概率,降低微波输出窗的击穿风险。设计结果表明,微波输出窗在中心频点处的主模反射系数低于0.01,传输效率高于99.9%,功率容量可达47.9 MW。  相似文献   

9.
X波段高功率微波馈源辐射总功率阵列法测量技术   总被引:2,自引:2,他引:2       下载免费PDF全文
分析了采用阵列法测量高功率微波(HPM)馈源辐射总功率的相关技术环节。仿真计算了某型X带HPM馈源辐射场分布,设计了积分法测量辐射总功率的参数,并对积分总功率与端口注入功率的关系以及积分方法引入的测量误差进行了计算。设计了由8路HPM辐射场功率密度测量系统组成阵列,对馈源辐射场功率密度进行测量,保证功率密度测量结果一致性和重复性。测量结果表明:多路测量系统测量波形相同,单路系统多次重复测量偏差在±0.1 dB内,多路测量系统对同一点辐射场功率密度测量偏差在±0.3 dB内,馈源热测E面方向图与冷测结果基本符合,积分总功率与等效辐射功率测量结果吻合较好。  相似文献   

10.
为进一步改进和优化高功率径向线阵列天线的拓扑结构,提高功率容量水平,并满足馈源的真空密封需求,提出并设计了一种适用于高功率径向线阵列天线的微波输出窗。该高功率径向线输出窗采用圆环形陶瓷,材料介电常数为9.4,窗片厚度为3 mm,内径为36 mm,可实现径向线阵列天线馈电系统的输入同轴波导与输出同轴波导间的真空密封。设计结果表明:在中心频率为2.856 GHz下,该径向线输出窗驻波比为1.03,插入损耗为0.17 dB,设计功率容量约150 MW。  相似文献   

11.
综述了国内外真空中高功率微波(HPM)下介质窗表面击穿问题的研究现状和进展。在介质窗表面击穿实验研究方面,介绍了国外最具代表性的研究成果,给出了介质窗材料表面及内部的破坏发展规律,并提出相应的理论模型。在理论仿真方面,重点介绍了国外在运用蒙特卡罗(Monte Carlo)程序和PIC模型对认识HPM下介质窗表面倍增放电机理上做出的突出贡献,给出了HPM下介质窗表面电子在不同影响因素下的运行状态,并提出了一个理论模型,从本质上解释了倍增电子数目和表面静电场以微波频率的2倍振荡的原因。介绍了目前几种可有效抑制介质窗表面微波击穿的技术手段。  相似文献   

12.
综述了国内外真空中高功率微波(HPM)下介质窗表面击穿问题的研究现状和进展。在介质窗表面击穿实验研究方面,介绍了国外最具代表性的研究成果,给出了介质窗材料表面及内部的破坏发展规律,并提出相应的理论模型。在理论仿真方面,重点介绍了国外在运用蒙特卡罗(Monte Carlo)程序和PIC模型对认识HPM下介质窗表面倍增放电机理上做出的突出贡献,给出了HPM下介质窗表面电子在不同影响因素下的运行状态,并提出了一个理论模型,从本质上解释了倍增电子数目和表面静电场以微波频率的2倍振荡的原因。介绍了目前几种可有效抑制介质窗表面微波击穿的技术手段。  相似文献   

13.
介质表面高功率微波击穿的数值模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
蔡利兵  王建国 《物理学报》2009,58(5):3268-3273
研究了用于模拟高功率微波条件下介质表面击穿的静电PIC-MCC模型,并通过自行编写的数值模拟程序模拟了真空及不同气压条件下介质表面击穿过程中的次级电子倍增和气体电离等过程.模拟结果发现,在真空及低气压条件下,电子的主要来源是次级电子倍增,电子数量以两倍于入射场的频率振荡;在高气压情况下,电子的主要来源是气体电离. 关键词: 介质表面击穿 高功率微波 数值模拟 次级电子倍增  相似文献   

14.
X波段高功率微波对介质窗材料的破坏现象   总被引:10,自引:10,他引:0       下载免费PDF全文
 在X波段微波源(频率9.4 GHz,功率1 GW)下,对4种典型介质窗材料(聚四氟乙烯、有机玻璃、低密度聚乙烯及高密度聚乙烯)在真空中进行了微波放电击穿实验,同时考虑了材料的不同表面处理工艺(表面刻槽和抛光)对其击穿特性的影响,对微波击穿后样品的表面形貌进行了宏观和微观分析,实验观测到:介质表面出现了沿微波电场方向的明显树枝状破坏现象,且材料表面处理工艺对其击穿破坏程度有显著影响,认为树枝状破坏通道与施加的微波场有着密切的关系。通过观察透明有机玻璃内部的树枝状破坏,发现树枝既沿介质表面生长,同时也向介质内部发展。提出了微波作用下介质窗击穿破坏的物理模型,认为微波电场导致树枝状破坏沿电场方向发展,而微波磁场导致树枝状向介质内部发展,并进一步给出了树枝状破坏起始和发展的可能原因。  相似文献   

15.
在X波段微波源(频率9.4 GHz,功率1 GW)下,对4种典型介质窗材料(聚四氟乙烯、有机玻璃、低密度聚乙烯及高密度聚乙烯)在真空中进行了微波放电击穿实验,同时考虑了材料的不同表面处理工艺(表面刻槽和抛光)对其击穿特性的影响,对微波击穿后样品的表面形貌进行了宏观和微观分析,实验观测到:介质表面出现了沿微波电场方向的明显树枝状破坏现象,且材料表面处理工艺对其击穿破坏程度有显著影响,认为树枝状破坏通道与施加的微波场有着密切的关系。通过观察透明有机玻璃内部的树枝状破坏,发现树枝既沿介质表面生长,同时也向介质内部发展。提出了微波作用下介质窗击穿破坏的物理模型,认为微波电场导致树枝状破坏沿电场方向发展,而微波磁场导致树枝状向介质内部发展,并进一步给出了树枝状破坏起始和发展的可能原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号