首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于王建方和李东给出的超图哈密顿圈的定义和Katona-Kierstead给出的超图哈密顿链的定义,近年来,国内外学者对一致超图的哈密顿圈分解的研究有一系列结果.特别是Bailey-Stevens和Meszka-Rosa研究了完全3-一致超图K_n~((3))的哈密顿圈分解,得到了n=6k+1,6k+2(k=1,2,3,4,5)的哈密顿圈分解.本文在吉日木图提出的边划分方法的基础上继续研究,得到了完全3-一致超图K_n~((3))的哈密顿圈分解的算法,由此得到了n=6k+2,6k+4(k=1,2,3,4,5,6,7),n=6k+5(k=1,2,3,4,5,6)时的圈分解.这一结果将Meszka-Rosa关于K_n~((3))的哈密顿圈分解结果从n≤32提高到了n≤46(n≠43).  相似文献   

2.
The problem of decomposing a complete 3-uniform hypergraph into Hamilton cycles was introduced by Bailey and Stevens using a generalization of Hamiltonian chain to uniform hypergraphs by Katona and Kierstead. Decomposing the complete 3-uniform hypergraphs K_n~(3) into k-cycles(3 ≤ k n) was then considered by Meszka and Rosa. This study investigates this problem using a difference pattern of combinatorics and shows that K_(n·5m)~(3) can be decomposed into 5-cycles for n ∈{5, 7, 10, 11, 16, 17, 20, 22, 26} using computer programming.  相似文献   

3.
设H=(V,E)是以V为顶点集, E为(超)边集的超图. 如果H的每条边均含有k个顶点, 则称H是k-一致超图. 超图H的点子集T称为它的一个横贯, 如果T 与H 的每条边均相交. 超图H的全横贯是指它的一个横贯T, 并且T还满足如下性质: T中每个顶点均至少有一个邻点在T中. H 的全横贯数定义为H 的最小全横贯所含顶点的数目, 记作\tau_{t}(H). 对于整数k\geq 2, 令b_{k}=\sup_{H\in{\mathscr{H}}_{k}}\frac{\tau_{t}(H)}{n_{H}+m_{H}}, 其中n_H=|V|, m_H=|E|, {\mathscr{H}}_{k} 表示无孤立点和孤立边以及多重边的k-一致超图类. 最近, Bujt\'as和Henning等证明了如下结果: b_{2}=\frac{2}{5}, b_{3}=\frac{1}{3}, b_{4}=\frac{2}{7}; 当k\geq 5 时, 有b_{k}\leq \frac{2}{7}以及b_{6}\leq \frac{1}{4}; 当k\geq 7 时, b_{k}\leq \frac{2}{9}. 证明了对5-一致超图, b_{5}\leq \frac{4}{15}, 从而改进了当k=5 时b_k的上界.  相似文献   

4.
超图H=(V,E)是一个二元组(V,E),其中超边集E中的元素是点集V的非空子集.因此图是一种特殊的超图,超图也可以看作是一般图的推广.特别地,如果超边集E中的元素均是点集V的k元子集,则称该超图为k-一致的.通常情况下,为叙述简便,我们也会将超边简称为边.图(超图)中的匹配是指图(超图)中互不相交的边的集合.对于图(超图)中的彩色匹配,有两种定义方式:一为染色图(超图)中互不相交且颜色不同的边的集合;二为顶点集均为[n]的多个染色图(超图)所构成的集族中互不相交且颜色均不同的边的集合,且每条边均来自集族中不同的图(超图).现主要介绍了图与超图中关于彩色匹配的相关结果.  相似文献   

5.
混合超图是含有两类超边的超图,一类称为C-超边,一类称为D-超边,它们的区别主要体现在染色要求上.混合超图的染色,要求每一C-超边至少有两个点染相同的颜色,而每一D-超边至少有两个点染不同的颜色.所用的最大颜色数称为对应混合超图的上色数,所用的最小颜色数称为对应混合超图的下色数.上、下色数与边数有密切关系.作者在文献[2]中证明了具有最小上色数的3一致C-超图边数的一个下界为‘n(n-2)/3’,其中n为对应混合超图的顶点数.该文证明当n=2k 1时,该下界是可以达到的.  相似文献   

6.
设H是一个超图, 用H\+*和L(H)分别表示H的对偶超图和线图. 定义H的邻接图是由L(H\+*)和H的所有环组成的图, 记作G\-H. 若G\-H是本原的, 则称H是本原的, 并称γ(G\-H)为H的指数. 该文得到了所有n阶本原简单超图以及所有秩不小于3的n阶本原简单超图的指数集, 并分别刻划了其极超图.  相似文献   

7.
刁卓 《数学进展》2020,(1):13-19
超图H=(V,E)顶点集为V,边集为E.S■V是H的顶点子集,如果H/S不含有圈,则称S是H的点反馈数,记τc(H)是H的最小点反馈数.本文证明了:(i)如果H是线性3-一致超图,边数为m,则τc(H)≤m/3;(ii)如果H是3-一致超图,边数为m,则τc(H)≤m/2并且等式成立当且仅当H任何一个连通分支是孤立顶点或者长度为2的圈.A■V是H的边子集,如果H\A不含有圈,则称A是H的边反馈数,记τc′(H)是H的最小边反馈数.本文证明了如果H是含有p个连通分支的3-一致超图,则τc’(H)≤2m-n+p.  相似文献   

8.
k—一致超图的补图的Laplacian   总被引:1,自引:0,他引:1  
常安  苗胜军 《数学研究》2000,33(3):251-260
引入了k-一致超图的补图的概念,并讨论了它的Laplacian与其补图的Laplacian之间的关系。  相似文献   

9.
陈爱莲 《数学研究》2008,41(4):384-387
假设H和H(分别是具有h个顶点和n个顶点的r一致超图.我们称一个具有n/h个分支,且每个分支都同构于H的H的生成子图为H的一个H-因子.记α(H) = max{|E′|/|V′|-1 |},其中的最大值取遍H的所有满足|V’|〉1的子超图(V’,E′).δ(H)表示超图H的最小度.在本文中,我们证明了如果δ(H)〈α(H),那么P=p(n)=n-1/α(H)就是随机超图Hr(n,P)包含.H-因子的一个紧的门槛函数.也就是说,存在两个常数c和C使得对任意P=p(n)=cn-1/α(H),几乎所有的随机超图Hr(n,P)都不包含一个H-因子,对任意P=p(n)=cn-1/α(H),几乎所有的随机超图Hr(n,P)都包含一个H-因子.  相似文献   

10.
主要讨论了不含k-C-圈的n阶r-一致超图,对不同的k,分别得出了它的极大边数的一个下界,并且得出在有些情况下它的下界是最大的.另外,我们得到了Krn含k-C-圈的一个充分必要条件.  相似文献   

11.
We show that, for a natural notion of quasirandomness in k‐uniform hypergraphs, any quasirandom k‐uniform hypergraph on n vertices with constant edge density and minimum vertex degree Ω(nk‐1) contains a loose Hamilton cycle. We also give a construction to show that a k‐uniform hypergraph satisfying these conditions need not contain a Hamilton ?‐cycle if k? divides k. The remaining values of ? form an interesting open question. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 49, 363–378, 2016  相似文献   

12.
Let H be a 3‐uniform hypergraph with n vertices. A tight Hamilton cycle C ? H is a collection of n edges for which there is an ordering of the vertices v1,…,vn such that every triple of consecutive vertices {vi,vi+1,vi+2} is an edge of C (indices are considered modulo n ). We develop new techniques which enable us to prove that under certain natural pseudo‐random conditions, almost all edges of H can be covered by edge‐disjoint tight Hamilton cycles, for n divisible by 4. Consequently, we derive the corollary that random 3‐uniform hypergraphs can be almost completely packed with tight Hamilton cycles whp, for n divisible by 4 and p not too small. Along the way, we develop a similar result for packing Hamilton cycles in pseudo‐random digraphs with even numbers of vertices. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

13.
For k ≥ 2 and r ≥ 1 such that k + r ≥ 4, we prove that, for any α > 0, there exists ε > 0 such that the union of an n‐vertex k‐graph with minimum codegree and a binomial random k‐graph with on the same vertex set contains the rth power of a tight Hamilton cycle with high probability. This result for r = 1 was first proved by McDowell and Mycroft.  相似文献   

14.
We investigate minimum vertex degree conditions for 3-uniform hypergraphs which ensure the existence of loose Hamilton cycles. A loose Hamilton cycle is a spanning cycle in which only consecutive edges intersect and these intersections consist of precisely one vertex.  相似文献   

15.
We give an algorithmic proof for the existence of tight Hamilton cycles in a random r‐uniform hypergraph with edge probability for every . This partly answers a question of Dudek and Frieze (Random Struct Algor 42 (2013), 374–385), who used a second moment method to show that tight Hamilton cycles exist even for where arbitrary slowly, and for . The method we develop for proving our result applies to related problems as well. © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 46, 446–465, 2015  相似文献   

16.
A subgraph in an edge-colored graph is multicolored if all its edges receive distinct colors. In this paper, we prove that a complete graph on 2m+1 vertices K2m+1 can be properly edge-colored with 2m+1 colors in such a way that the edges of K2m+1 can be partitioned into m multicolored Hamiltonian cycles.  相似文献   

17.
For positive integers r>?, an r‐uniform hypergraph is called an ?‐cycle if there exists a cyclic ordering of its vertices such that each of its edges consists of r consecutive vertices, and such that every pair of consecutive edges (in the natural ordering of the edges) intersect in precisely ? vertices; such cycles are said to be linear when ?=1, and nonlinear when ?>1. We determine the sharp threshold for nonlinear Hamiltonian cycles and show that for all r>?>1, the threshold for the appearance of a Hamiltonian ?‐cycle in the random r‐uniform hypergraph on n vertices is sharp and given by for an explicitly specified function λ. This resolves several questions raised by Dudek and Frieze in 2011.10  相似文献   

18.
Let G3‐out denote the random graph on vertex set [n] in which each vertex chooses three neighbors uniformly at random. Note that G3‐out has minimum degree 3 and average degree 6. We prove that the probability that G3‐out is Hamiltonian goes to 1 as n tends to infinity. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

19.
We show that for every there exists C > 0 such that if then asymptotically almost surely the random graph contains the kth power of a Hamilton cycle. This determines the threshold for appearance of the square of a Hamilton cycle up to the logarithmic factor, improving a result of Kühn and Osthus. Moreover, our proof provides a randomized quasi‐polynomial algorithm for finding such powers of cycles. Using similar ideas, we also give a randomized quasi‐polynomial algorithm for finding a tight Hamilton cycle in the random k‐uniform hypergraph for . The proofs are based on the absorbing method and follow the strategy of Kühn and Osthus, and Allen et al. The new ingredient is a general Connecting Lemma which allows us to connect tuples of vertices using arbitrary structures at a nearly optimal value of p. Both the Connecting Lemma and its proof, which is based on Janson's inequality and a greedy embedding strategy, might be of independent interest.  相似文献   

20.
A graph is Hamiltonian if it contains a cycle passing through every vertex. One of the cornerstone results in the theory of random graphs asserts that for edge probability , the random graph G(n, p) is asymptotically almost surely Hamiltonian. We obtain the following strengthening of this result. Given a graph , an incompatibility system over G is a family where for every , the set Fv is a set of unordered pairs . An incompatibility system is Δ‐bounded if for every vertex v and an edge e incident to v, there are at most Δ pairs in Fv containing e. We say that a cycle C in G is compatible with if every pair of incident edges of C satisfies . This notion is partly motivated by a concept of transition systems defined by Kotzig in 1968, and can be used as a quantitative measure of robustness of graph properties. We prove that there is a constant such that the random graph with is asymptotically almost surely such that for any μnp‐bounded incompatibility system over G, there is a Hamilton cycle in G compatible with . We also prove that for larger edge probabilities , the parameter μ can be taken to be any constant smaller than . These results imply in particular that typically in G(n, p) for , for any edge‐coloring in which each color appears at most μnp times at each vertex, there exists a properly colored Hamilton cycle. Furthermore, our proof can be easily modified to show that for any edge‐coloring of such a random graph in which each color appears on at most μnp edges, there exists a Hamilton cycle in which all edges have distinct colors (i.e., a rainbow Hamilton cycle). © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 49, 533–557, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号