共查询到13条相似文献,搜索用时 93 毫秒
1.
H2O在Cu(100)表面吸附的从头算研究 总被引:3,自引:0,他引:3
用量子化学从头计算方法,以原子簇Cu5为模拟表面,研究了水在Cu(100)面上不同吸附位的吸附情况,结果表明:水分子通过氧原子与表面成键,顶位是其最佳吸附位,吸附能约为70kJ/mol,平衡距离为0.213nm,氢原子远离表面.在氧原子不加极化函数时,水分子的二次轴垂直于表面时能量最低,但倾斜至50°所需能量仅在10kJ/mol以内.当考虑O原子d轨道的影响时,水分子倾斜时能量较低,得到了与实验相符的吸附构型.另外还研究了表面电荷对吸附体系的影响,结果表明:表面带正电荷时,水与表面间的相互作用增强,水上所转移电荷增多,Cu-O间平衡距离减小;表面带负电荷时,情况与之相反,且氢原子靠近表面时,势能曲线有最低点. 相似文献
2.
为什么水在金属表面的吸附构型是倾斜的——水在铜、铝表面吸附的量子化学计算 总被引:1,自引:0,他引:1
用量子化学从头算方法,分别以原子簇Cu5、Al4、Al10模拟Cu(100)和Al(111)表面,在不同基组水平上,计算了水在两种金属表面上倾斜吸附的势能面,结果表明:当计算基组中不含氧原子的d轨道时,得到水分子在金属表面垂直吸附的构型,这与实验结果不符;当水中氧原子加极化函数时,水分子倾斜吸附时能量较低,得到与实验相符的吸附构型。这说明水中氧原子d轨道在计算中起着关键作用,在成键过程中有着重要影响。 相似文献
3.
水在石墨(0001)面簇模型桥位上吸附的量子化学研究 总被引:1,自引:0,他引:1
用从头计算方法对水在石墨(0001)面桥位上的吸附进行了研究.用C6H8原子簇模拟石墨表面,在6-31G*水平上计算了水在不同方向和位置上的吸附能量.研究表明:水在石墨面上的吸附很弱,属于物理吸附;在中性或带负电荷的石墨表面,当水分子中的氢原子靠近石墨面时,体系存在能量最小值,而在带正电荷的表面,当氧原子靠近石墨面时存在稳定的吸附点;不论表面带正电荷还是带负电荷,均对水分子的吸附起增强作用. 相似文献
4.
CO在CeO2(111)表面的吸附与氧化 总被引:2,自引:0,他引:2
采用密度泛函理论计算了CO在CeO2(111)表面的吸附与氧化反应行为. 结果表明, O2在洁净的CeO2(111)表面为弱物理吸附, 而在氧空位表面是强化学吸附, 且O2分子活化程度较大, O—O键长为0.143 nm. CO在CeO2(111)表面吸附行为的研究表明, CO在洁净表面及氧空位表面上为物理吸附, 吸附能均小于0.42 eV; 当表面氧空位吸附O2后, CO可吸附生成二齿碳酸盐中间体或直接生成CO2, 与原位红外光谱结果相一致. 表面碳酸盐物种脱附生成CO2的能垒仅为0.28 eV. 计算结果表明, 当CeO2表面存在氧空位时, Hubbard参数U对CO吸附能有一定的影响. CeO2载体在氧化反应中可能的催化作用为, 在氧气氛下, CeO2表面氧空位吸附O2分子, 形成活性氧物种, 参与CO催化氧化反应. 相似文献
5.
运用广义梯度密度泛函理论(GGA)的RPBE方法结合周期平板模型,在DNP基组下,研究了NO以N端和O端两种吸附取向在CuCl(111)表面上的吸附.通过对不同吸附位和不同覆盖度下的吸附能和几何构型参数的计算和比较发现:NO吸附在CuCl(111)表面Cu原子上的top位时为稳定的吸附;覆盖度为0.25 mL时吸附比较稳定;NO的N端吸附比O端吸附更有利,N端吸附时为化学吸附,O端吸附时为物理吸附.布居分析结果表明整个吸附体系发生了从Cu原子向NO分子的电荷转移,且O端吸附时电荷转移更多.N端吸附和O端吸附时,N-O键的伸缩振动频率均红移,同时O端吸附时红移更多. 相似文献
6.
研究了乙烷在Ni(111)表面解离的可能反应机理, 使用完全线性同步和二次同步变换(complete LST/QST)方法确定解离反应的过渡态. 采用基于第一性原理的密度泛函理论与周期平板模型相结合的方法, 优化了C2H6裂解反应过程中各物种在Ni(111)表面的top, fcc, hcp和bridge位的吸附模型, 计算了能量, 并对布居电荷进行分析, 得到了各物种的有利吸附位. 结果表明, 乙烷在Ni(111)表面C—C解离的速控步骤活化能为257.9 kJ·mol-1, 而C—H解离速控步骤活化能为159.8 kJ·mol-1, 故C—H键解离过程占优势, 主要产物是C2H4和H2. 相似文献
7.
甲醇在Au(111)表面吸附的密度泛函研究 总被引:2,自引:0,他引:2
采用基于第一性原理的密度泛函理论和周期平板模型相结合的方法,对CH3OH分子在Au(111)表面top, fcc, hcp和bridge位的吸附模型进行了构型优化、能量计算以及Mulliken布居分析,结果表明top位是较有利的吸附位. 吸附的CH3OH解离产生甲氧基CH3O和H, 对它们在Au(111)面的吸附进行的计算表明, bridge和fcc位分别是二者的最佳吸附位. 对过渡态的计算给出了CH3OH在Au表面解离吸附的可能机理: 首先发生 O-H 键的断裂,继而生成甲氧基中间体. 相似文献
8.
基于密度泛函理论, 采用广义梯度近似方法结合周期平板模型, 对Cu2O(111)非极性表面上CO和CH3O的吸附和共吸附进行了系统的研究. 计算了CO以4种吸附模式和CH3O以O端在Cu2O(111)表面上的吸附, 通过对不同吸附位置的吸附能、几何构型参数和Mulliken电荷的计算和比较发现, Cu2O(111)表面上配位未饱和铜离子(CuCUS)为CO的活性吸附位; 配位饱和铜离子(CuCSA)为CH3O的活性吸附位. CO和CH3O吸附于Cu2O(111)表面后, 表面弛豫现象明显改善. CO和CH3O与Cu2O(111)表面能够形成共吸附体系, CO和CH3O之间的相互作用力达到75.89 kJ/mol, 为典型的化学作用, 有助于促进CO和CH3O反应形成表面物种CH3OCO, 计算结果与实验事实一致. 相似文献
9.
采用密度泛函理论(DFT), 选取DMol3程序模块, 对噻吩在M(111) (M=Pd, Pt, Au)表面上的吸附行为进行了探讨. 通过对噻吩在不同底物金属上的吸附能、吸附构型、Mulliken 电荷布居、差分电荷密度以及态密度的分析发现, 噻吩在Pd(111)面上的吸附能最大, Pt(111)面次之, Au(111)面最小. 吸附后, 噻吩在Au(111)面上的构型几乎保持不变, 最终通过S端倾斜吸附于top 位; 噻吩在Pd(111)及Pt(111)面上发生了折叠与变形, 环中氢原子向上翘起, 最终通过环平面平行吸附于hollow 位. 此外, 噻吩环吸附后芳香性遭到了破坏, 环中碳原子发生sp3杂化, 同时电子逐渐由噻吩向M(111)面发生转移, M(111)面上的部分电子也反馈给了噻吩环中的空轨道, 这种协同作用最终导致了噻吩分子稳定吸附于M(111)面. 相似文献
10.
采用密度泛函理论(DFT),选取DMol3程序模块,对噻吩在M(111)(M=Pd,Pt,Au)表面上的吸附行为进行了探讨.通过对噻吩在不同底物金属上的吸附能、吸附构型、Mulliken电荷布居、差分电荷密度以及态密度的分析发现,噻吩在Pd(111)面上的吸附能最大,Pt(111)面次之,Au(111)面最小.吸附后,噻吩在Au(111)面上的构型几乎保持不变,最终通过S端倾斜吸附于top位;噻吩在Pd(111)及Pt(111)面上发生了折叠与变形,环中氢原子向上翘起,最终通过环平面平行吸附于hollow位.此外,噻吩环吸附后芳香性遭到了破坏,环中碳原子发生sp3杂化,同时电子逐渐由噻吩向M(111)面发生转移,M(111)面上的部分电子也反馈给了噻吩环中的空轨道,这种协同作用最终导致了噻吩分子稳定吸附于M(111)面. 相似文献
11.
采用密度泛函理论研究了Pd(111)面和Ru-Pd(111)面的性质及对糠醛的吸附.原子尺寸因素、相对键长、形成能及d带中心等计算结果表明,Ru-Pd(111)面比Pd(111)面稳定且活性强,Ru的修饰优化了Pd(111)面的几何构型.糠醛在Pd(111)面及Ru-Pd(111)面的初始吸附位分别为P(top-bridge)位及P(Pd-fcc-Ru-fcc)位时,吸附能最大,吸附构型最稳定.由电荷布局和差分电荷密度可得,糠醛在Ru-Pd(111)面上电荷转移数更多,相互作用更强烈,因此吸附能更大.分析态密度可知,产生吸附的主要原因是位于-7.34 eV处至费米能级处的p,d轨道杂化.吸附于Ru-Pd(111)面后糠醛分子的p轨道向低能级偏移程度更明显,使Ru改性后的Pd催化剂具有更好的催化活性. 相似文献
12.
采用广义梯度近似的密度泛函理论并结合平板模型的方法, 优化了糠醛分子在Pt(111)面的吸附模型,并探究了糠醛脱碳反应形成呋喃的机理. 结果表明: 吸附后糠醛分子环上的C―H(O)键及支链―CHO相对于金属表面倾斜上翘, 分子平面被扭曲, 易于呋喃的形成; 同时, 糠醛分子向Pt表面转移电子0.765e, 环中的大π键与Pt(111)表面的d轨道发生较强的相互作用, 使得糠醛的芳香性被破坏, 环上的碳原子呈现准sp3杂化. 此外, 对糠醛脱碳反应中的各反应步骤进行过渡态搜索, 通过比较各步骤的活化能, 得出糠醛更易先失去支链上的H形成酰基中间体(C4H3O)CO, 中间体继续脱碳加氢形成产物呋喃. 该过程的控速步骤为(C4H3O)CO*+*→C4H3O*+CO* (*为吸附位),活化能为127.65 kJ·mol-1. 相似文献
13.
密度泛函理论研究十二烷硫醇在Au(111)面上的吸附 总被引:1,自引:0,他引:1
采用第一性原理方法研究了十二烷硫醇(C12H25SH)分子在Au(111)面上未解离和解离吸附的结构、能量和吸附性质,在此基础上分析判断长链硫醇分子在Au(111)面吸附时S―H键的解离, 以及分子链长度对吸附结构和能量的影响. 计算了S原子在不同位置以不同方式吸附的系列构型, 结果表明在S―H键解离前和解离后,均存在两种可能的表面结构, 直立吸附构型和平铺吸附构型; 未解离的C12H25SH分子倾向于吸附在top位, 吸附能为0.35-0.38 eV; H原子解离后C12H25S基团倾向于吸附在bri-fcc位, 吸附能量为2.01-2.09 eV. 比较分析未解离吸附和解离吸附, 发现C12H25SH分子未解离吸附相较于解离吸附要稳定, 未解离吸附属于弱化学吸附.局域电子态密度和差分电荷密度分析进一步验证了S―H解离后S原子与表面之间成键的数目增加, 而且键合更强. 同时我们发现长链硫醇的吸附能量较短链硫醇的吸附能量略大, S原子与表面Au原子之间的距离略小. 相似文献