首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
光阴极微波电子枪中发射度补偿及模拟计算   总被引:1,自引:0,他引:1  
介绍了上海深紫外自由电子激光用光阴极微波电子枪采用发射度补偿技术的结果 .详细分析了线性空间电荷力的特点及对束流发射度的影响 ,从束流动力学和相空间两方面讨论了发射度补偿原理 .给出了补偿线圈的设计结构及其轴向场分布 .利用PARMELA程序对补偿效果作了模拟计算 .结果表明 ,设计的腔体对单圈 1 .5nC束团 ,在枪出口后 1 .2m处 ,电子能量为 5 .7MeV ,横向归一化发射度εn ,RMS=1 .61 2πmm·mrad. The emittance compensation technology will be used on the photo cathode RF gun for Shanghai SDUV FEL. In this paper, the space charge force and its effect on electron beam transverse emittance in RF gunis is studied, the principle of emittance compensation in phase space is discussed. We have designed a compensation solenoid and calulated its magnetic field distribution. Its performance has been studied by the code PARMELA. A simulation result indicates that the normalized transverse RMS emi...  相似文献   

2.
The Laser Undulator Compact X-ray source(LUCX) is a test bench for a compact high brightness X-ray generator,based on inverse Compton Scattering at KEK,which requires high intensity multi-bunch trains with low transverse emittance.A photocathode RF gun with emittance compensation solenoid is used as an electron source.Much endeavor has been made to increase the beam intensity in the multi-bunch trains.The cavity of the RF gun is tuned into an unbalanced field in order to reduce space charge effects,so that the field gradient on the cathode surface is relatively higher when the forward RF power into gun cavity is not high enough.A laser profile shaper is employed to convert the driving laser profile from Gaussian into uniform.In this research we seek to find the optimized operational conditions for the decrease of the transverse emittance.With the uniform driving laser and the unbalanced RF gun,the RMS transverse emittance of a 1 nC bunch has been improved effectively from 5.46 πmm.mrad to 3.66 πmm.mrad.  相似文献   

3.
The Laser Undulator Compact X-ray source (LUCX) is a test bench for a compact high brightness X-ray generator, based on inverse Compton Scattering at KEK, which requires high intensity multi-bunch trains with low transverse emittance. A photocathode RF gun with emittance compensation solenoid is used as an electron source. Much endeavor has been made to increase the beam intensity in the multi-bunch trains. The cavity of the RF gun is tuned into an unbalanced field in order to reduce space charge effects, so that the field gradient on the cathode surface is relatively higher when the forward RF power into gun cavity is not high enough. A laser profile shaper is employed to convert the driving laser profile from Gaussian into uniform. In this research we seek to find the optimized operational conditions for the decrease of the transverse emittance. With the uniform driving laser and the unbalanced RF gun, the RMS transverse emittance of a 1 nC bunch has been improved effectively from 5.46 πmm·mrad to 3.66 πmm·mrad.  相似文献   

4.
In this paper, we present the simulation results of a 1.6 cell X-band photocathode RF gun for ultra-low emittance electron beams. It will work at 9.3 GHz. The emittance, bunch length, electron energy and energy spread at the gun exit are optimized at bunch charge of 1pC using PARMELA. Electron bunches with emittance about 0.1 mm·mrad and bunch length less than 100 fs can be obtained from this gun. A PITZ type coupler is adopted in this gun and an initial simulation by MAFIA is also given in this paper.  相似文献   

5.
The length of electron beam from a photocathode RF gun is determined by a spectrometer, according to the relative energy spread induced by the bunch length during the acceleration in a linac. For a photocathode RF gun, different laser injected phase and beam charge are studied. The compression is changed for the different laser phases, as from 10° to 30°, and the bunch length is lengthened due to the strong longitudinal space charge force, caused by the increased charge.  相似文献   

6.
唐传祥  刘小寒 《中国物理 C》2009,33(Z2):102-104
In this paper, we present the simulation results of a 1.6 cell X-band photocathode RF gun for ultra-low emittance electron beams. It will work at 9.3 GHz. The emittance, bunch length, electron energy and energy spread at the gun exit are optimized at bunch charge of 1pC using PARMELA. Electron bunches with emittance about 0.1 mm·mrad and bunch length less than 100 fs can be obtained from this gun. A PITZ type coupler is adopted in this gun and an initial simulation by MAFIA is also given in this paper.  相似文献   

7.
Beam emittance is one of the most important parameters for electron sources. To investigate the beam emittance of the 3.5-cell DC-SC photocathode injector developed at Peking University, a multi-slit emittance measurement device has been designed and manufactured. The designed slit width, mask thickness and beamlet drift length are 100 μ m, 3 mm and 430 mm respectively. It is suitable for the electron beam with energy of about 5 MeV and the average current less than 0.1 mA. The preliminary measurement result of the rms emittance of the electron beam produced by the DC-SC injector is about 5-7 mm·mrad.  相似文献   

8.
During the last decades, photocathode rf gun has been proven to be successful in generating the high brightness electron beam (-lnC,-lπ mmmrad,-l ps) which is required by the ILC, XFEL, Thomson scattering x-ra y source, etc. A photocathode rf gun system is built to develop electron source for the Thomson scattering x-ray source at Accelerator Laboratory of Tsinghua University. The system consists of a BNL/ATF-type 1.6 cell S-band rf cavity, a solenoid for emittance compensation, a laser system and some simple equipments for beam diagnosis. The first beam measurements of the photocathode rf gun, including the dark current, transverse beam profile, charge and quantum efficiency, are reported.  相似文献   

9.
BXERL is a proposal for a test facility (Beijing X-ray Energy Recovery Linac), which requires its injector to provide an electron beam of 5 MeV, 77 pC/ bunch at a repetition rate of 130 MHz (average current of 10 mA). In this paper, we present the design of the injector, which consists of a 500 kV photocathode DC gun equipped with a GaAs cathode preparation device, a 1.3 GHz normal conducting RF buncher, two solenoids, and one cryomodule containing two 1.3 GHz 2-cell superconducting RF cavities as the energy booster. The detailed beam dynamics show that the injector can generate electron bunches with a RMS normalized emittance of 1.49 πmm·mrad, a bunch length of 0.67 mm, a beam energy of 5 MeV and an energy spread of 0.72%.  相似文献   

10.
Measurement of emittance for a space-charge dominated electron beam from a photocathode rf gun is performed by employing the multislit-based method at Accelerator Laboratory of Tsinghua University. We present the design considerations on the multislit system and the experimental results, with special attention to the study of space charge induced emittance growth. The experimental results are in reasonable agreement with the PARMELA simulations.  相似文献   

11.
The Laser Undulator Compact X-ray source(LUCX) is a test bench for a compact high brightness X-ray generator,based on inverse Compton Scattering at KEK,which requires high intensity multi-bunch trains with low transverse emittance.A photocathode RF gun with emittance compensation solenoid is used as an electron source.Much endeavor has been made to increase the beam intensity in the multi-bunch trains.The cavity of the RF gun is tuned into an unbalanced field in order to reduce space charge effects,so that ...  相似文献   

12.
朱雄伟 《中国物理 C》2002,26(3):286-289
模拟研究了1.6个腔、高梯度的W-band光阴极微波电子枪系统,该系统能产生和加速300pC的电子束团.设计系统由频率91.392GHz光阴极微波电子枪以及频率91.392GHz行波加速结构组成.基于射频直线加速器标度律与数值模拟结果,设计系统能产生能量1.74MeV,电量300pC,束团长度0.72ps,归一化横向发射度0.55mm·mrad的电子束团.研究了高频、高梯度下的束流动力学.由于高梯度,有质动力效应在束流动力学中起重要作用,且由于横向与纵向之间的耦合,在基次空间谐波的情形下,仍然存在着有质动力聚焦效应.  相似文献   

13.
为满足合肥先进光源对高品质注入束流的要求,合肥先进光源预研项目研制了一套光阴极微波电子枪系统作为注入器电子源。为降低空间电荷效应引起的束流发射度增长,对驱动激光整形及传输系统进行了理论和实验研究。通过双折射晶体的脉冲时间整形以及采用光阑高斯截断的空间整形,得到了近似均匀分布的激光脉冲。像传递激光传输光路,实现了光阴极表面激光位置的高稳定性。实验结果显示,光阴极表面的激光位置抖动小于4 μm,激光性能满足实验要求。  相似文献   

14.
The length of electron beam from a photocathode RF gun is determined by a spectrometer, according to the relative energy spread induced by the bunch length during the acceleration in a linac. For a photocathode RF gun, different laser injected phase and beam charge are studied. The compression is changed for the different laser phases, as from 10° to 30°, and the bunch length is lengthened due to the strong longitudinal space charge force, caused by the increased charge.  相似文献   

15.

The radiation of high-gain short-wavelength free-electron laser depends on the slice transverse emittance of the electron bunch. This essay introduces the method of slice emittance measurement, and shows the brief setup of this experiment using the solenoid scanning and RF deflecting cavity at Tsinghua University. The preliminary experimental results show that the slice rms emittance of the electron bunch generated by photocathode RF gun has considerable variations along the bunch and is typically less than 0.55 mm mrad for the laser rms radius of 0.4 mm.

  相似文献   

16.
To increase the quantum efficiency (QE) of a copper photocathode and reduce the thermal emittance of an electron beam, a drive laser with oblique incidence was adopted in a BNL type photocathode rf gun. The disadvantageous effects on the beam quality caused by oblique incidence were analyzed qualitatively. A simple way to solve the problems through wavefront shaping was introduced and the beam quality was improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号