首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
We study the effects of quantum interference in the spontaneous emission spectrum of a four-level driven atomic system. We use three strong laser fields to drive the atom and a weak laser field to prepare the initial state of the atom. The atomic system exhibits Autler-Townes triplet in the spectrum. The single Lorentzian peak splits into triplet and their widths are controlled by the relative strengths of the laser fields.  相似文献   

2.
We propose a scheme for generating entangled squeezed vacuum states of electromagnetical fields. The scheme is based on cavity QED. In this scheme, an atom interacts, successively, with a classical field, two quantum cavity fields, and another classical field. By detecting the final states of the atom, the two quantum cavity fields will be projected to an entangled state.  相似文献   

3.
Driven by one upper level coupling field, a three-level V-type atomic system with a pair of upper levels is studied. With one strong coupling field and one weak probe field, it is found that, due to the effects of the upper level coupling field, the quantum coherence between the two upper levels can be induced, and the absorption of the probing field is very sensitive to the relative phase of the probe, the pumping and the upper level coupling fields. With proper parameters, lasing without inversion (LWI) can be realized.  相似文献   

4.
We analyze the interaction of three laser fields with a four-level quantum system in a tripod configuration. We obtain an analytical expression for the linear susceptibility and nonlinear susceptibility of a weak-probe field and show that the properties of double electromagnetically induced transparency and the self-Kerr nonlinearity can be modified significantly by changing the ratio of the two coupling fields. We also show that a coherently prepared tripod scheme can be used for a giant self-Kerr nonlinearity generation with vanishing absorption in the case of optimal ratio. We present a physical understanding of our numerical results using the dressed-state approach and analytical explanation.  相似文献   

5.
We have considered the interference spectra that occur at the three-photon generated frequency arising from the interaction of three laser fields with a four-level atom, where two of the laser fields are on two-photon resonance with the three levels forming a “λ” scheme while the third laser operates between the second ground and the second excited state of the atom. At low intensities of all three laser fields, the overall intensity of the peak at the three-photon generated frequency, describing the spectrum of an electron in the second excited state, depends on the strength of the combined field of the two laser fields that are on two-photon resonance and it takes negative values. This indicates that light amplification without population inversion is likely to occur at the three-photon generated frequency. The combined field of the three laser fields induces multiphoton excitations near the three-photon generated frequency, whose peaks are characterized by linewidths which are much less than the natural linewidths of the atoms. These excitations describe absorption or stimulating emission processes depending on the values of the detunings of the laser fields. The derived results are graphically presented and discussed. Received: 24 January 2001 / Published online: 8 June 2001  相似文献   

6.
A.-S.F. Obada 《Physica A》2008,387(12):3065-3071
We construct a complete representation of the atomic information entropy of an arbitrary multi-level system. Our approach is applicable to all scenarios in which the quantum state shared by a single particle and fields is known. As illustrations we apply our findings to a single four-level atom strongly coupled to a cavity field and driven by a coherent laser field. In this framework, we discuss connections with entanglement frustration and entropic forms. We conclude by showing how the atomic information entropy can be extended to examine entanglement in multi-level atomic systems.  相似文献   

7.
We present a method of generating two-mode single atom laser based on the nonresonant interaction of a three-level Λ type atom in a two-mode cavity with three strong classical driving fields. An analytical solution for this effective dynamics under the presence of the cavity losses is obtained, which allow us to analyze the entanglement properties and the photon statistics of the two cavity modes exactly. It is also shown that the possible generation of the two-mode entangled coherent states in the transient regime after the atomic measurement.  相似文献   

8.
We examine a generic three level mechanism of quantum computation in which all fundamental single and double qubit quantum logic gates are operating under the effect of adiabatically controllable static (radiation free) bias couplings between the states. Under the time evolution imposed by these bias couplings the quantum state cycles between the two degenerate levels in the ground state and the quantum gates are realized by changing Hamiltonian at certain time intervals when the system collapses to a two state subspace. We propose a physical implementation of the mechanism using Aharonov-Bohm persistent-current loops in crossed electric and magnetic fields, with the output of the loop read out by using a quantum Hall effect aided mechanism. Received 26 March 2002 / Received in final form 8 July 2002 Published online 19 November 2002  相似文献   

9.
We study quantum teleportation of single qubit information state using 3-qubit general entangled states. We propose a set of 8 GHZ-like states which gives (i) standard quantum teleportation (SQT) involving two parties and 3-qubit Bell state measurement (BSM) and (ii) controlled quantum teleportation (CQT) involving three parties, 2-qubit BSM and an independent measurement on one qubit. Both are obtained with perfect success and fidelity and with no restriction on destinations (receiver) of any of the three entangled qubits. For SQT, for each designated one qubit which is one of a pair going to Alice, we obtain a magic basis containing eight basis states. The eight basis states can be put in two groups of four, such that states of one group are identical with the corresponding GHZ-like states and states of the other differ from the corresponding GHZ-like states by the same phase factor. These basis states can be put in two different groups of four-states each, such that if any entangled state is a superposition of these with coefficients of each group having the same phase, perfect SQT results. Also, for perfect CQT, with each set of given destinations of entangled qubits, we find a different magic basis. If no restriction on destinations of any entangled qubit exists, three magic semi-bases, each with four basis states, are obtained, which lead to perfect SQT. For perfect CQT, with no restriction on entangled qubits, we find four magic quarter-bases, each having two basis states. This gives perfect SQT also. We also obtain expressions for co-concurrences and conditional concurrences.  相似文献   

10.
我们考虑初始无关联并且与由一个谐振子构成的环境之间互相耦合的三量子比特系统。通过研究量子比特-环境的耦合强度以及量子比特初始态对量子关联的影响,我们发现环境可以诱导量子关联,提出并证明了四个命题阐述谐振子如何调控三个量子比特中量子关联的分布。给出了产生量子关联的条件。特别地,对于弱耦合,我们不但能够获得很多的量子关联,而且还使量子比特系统和环境始终处于分离态。一般地,量子关联动力学是很复杂 的,这是由于环境起着两个互相竞争的作用:一方面诱导出各个比特之间的量子关联;另一方面又使它们发生消相干,从而破坏量子关联。  相似文献   

11.
我们考虑初始无关联并且与由一个谐振子构成的环境之间互相耦合的三量子比特系统。通过研究量子比特-环境的耦合强度以及量子比特初始态对量子关联的影响,我们发现环境可以诱导量子关联,提出并证明了四个命题阐述谐振子如何调控三个量子比特中量子关联的分布。给出了产生量子关联的条件。特别地,对于弱耦合,我们不但能够获得很多的量子关联,而且还使量子比特系统和环境始终处于分离态。一般地,量子关联动力学是很复杂 的,这是由于环境起着两个互相竞争的作用:一方面诱导出各个比特之间的量子关联;另一方面又使它们发生消相干,从而破坏量子关联。  相似文献   

12.
We propose an efficient scheme for realizing squeezing for a cavity mode. In the scheme, a collection of ladder-type three-level atoms are trapped in a cavity and driven by two classical fields. Under certain conditions, the cavity field deterministically evolves to a squeezed state. The scheme can also be used for conditional generation of superpositions of different squeezed vacuum states.  相似文献   

13.
In this paper, we investigate several properties of the full signal-idler-pump mode quantum state generated by a triply resonant non-degenerate Optical Parametric Oscillator operating above threshold, with an injected wave on the signal and idler modes in order to lock the phase diffusion process. We determine and discuss the spectral purity of this state, which turns out not to be always equal to 1 even though the three interacting modes have been taken into account at the quantum level. We have seen that the purity is essentially dependent on the weak intensity of the injected light and on an asymmetry of the synchronization. We then derive the expression of its total three-mode Glauber P-function, and calculate the joint signal-idler photon number probability distribution and investigate their dependence on the injection.  相似文献   

14.
We study optical schemes for generating both a displaced photon and a displaced qubit via conditional measurement. Combining one mode prepared in different microscopic states (one-mode qubit, single photon, vacuum state) and another mode in macroscopic states (coherent state, single photon added coherent state), a conditional state in the other output mode exhibits properties of a superposition of the displaced vacuum and a single photon. We propose to use the displaced qubit and entangled states composed of the displaced photon as components for quantum information processing. Basic states of such a qubit are distinguishable from each other with high fidelity. We show that the qubit reveals both microscopic and macroscopic properties. Entangled displaced states with a coherent phase as an additional degree of freedom are introduced. We show that additional degree of freedom enables to implement complete Bell state measurement of the entangled displaced photon states.  相似文献   

15.
We show that it is possible to localize an atom in a half-wavelength region by relaxing the strict condition that the atom is prepared in a specific excited state as in the recently proposed scheme [Phys. Rev. A 65 (2002) 043819]. In particular, we consider a four-level atom, for which a weak exciting field transfers population from the ground state to the excited state and three control fields (one standing-wave field while two travelling-wave fields) couple the excited state and two auxiliary states. By tuning the exciting field and by varying the collective phase of the control fields, the atom is localized in one of the two half-wavelength regions with 50% detecting probability. The main advantage of the scheme is the experimental accessibility and controllability.  相似文献   

16.
Our work presents a theoretical study on the behavior of the fluctuation statistics of the field emitted from a semiconductor microcavity containing a quantum well. We derive an analytical expression of the noise spectra in non-resonant pumping. Dynamical behaviors of the noise spectra depending on the thermal bath and the detuning between exciton and cavity frequencies are discussed.  相似文献   

17.
Using the Schrödinger-Maxwell equations, we investigate the formation of microwave solitons in a crystal of molecular magnets. This system is subjected to one dc magnetic field and two (probe and coupling) ac resonant magnetic fields. The results show that the probe magnetic field can freely propagate in a crystal of molecular magnets due to quantum interference. Furthermore, within certain parameter range, both bright and dark microwave solitons can occur in such a highly resonant medium. We also obtain the analytical expressions for the phase shift and absorption coefficient of the probe magnetic field.  相似文献   

18.
J. Li  R. Yu 《Physics letters. A》2008,372(35):5660-5665
We study the propagation of two quantized optical fields via considering the collective effects of photonic emissions and excitations of a three-level cyclic-type system (such as atomic ensemble with symmetry broken, or the chiral molecular gases, or manual “atomic” array with symmetry broken), where the quantum transitions is driven by two quantized fields and a classical one. The results show that the parametric conversion and maximally entangled photon pair generation can be achieved by means of the collective excitation of the two upper energy levels induced by the classic optical field. This investigation may be used for the generated coherent short-wavelength quantum radiation and quantum information processing.  相似文献   

19.
We study the photon statistics of the field emitted from a semiconductor microcavity containing a quantum well. We present an analytical expression of the autocorrelation function in non-resonant pumping. A dynamical behavior of the autocorrelation function depending of the detuning between exciton and cavity frequencies is discussed.  相似文献   

20.
We firstly give a nonlocal method for generating pair coherent state with two traveling wave fields in distinct districts. The experimental scheme proposed is based on a two-mode photon number matching process, which employs weak cross-Kerr media and on/off detection. Then we discuss the details for implementing this scheme, showing that it is robust against the low quantum efficiency of photon detectors and offers nearly perfect pair coherent states. Finally, we show how a two-mode Schrödinger cat state and a generalized two-mode correlated photon number state can be prepared via this matching process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号