首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this study, electronic structure, stability, and tendency to exchange electron of neutral, anionic, and cationic Rh x Cu4?x (x = 0–4) small clusters were investigated by density functional theory calculations. For neutral small clusters, it was found that the most stable structures of Rh4, Rh3Cu and Rh2Cu2 have distorted tetrahedral shape while the most stable structures of RhCu3 and Cu4 have quasi-planer shape. Adding charges to the clusters, caused shapes of the most stable structures undergo variations. Stabilities of the neutral, anionic, and cationic clusters decrease linearly with increasing the copper content. In addition, calculated chemical harnesses indicated that the small cluster with 75 % copper content has the least chemical hardness. Interestingly, prevailing number of electronegative (Rh) and electropositive (Cu) atoms in the anionic and cationic clusters coincides with high dipole moment in these species that occur at 25 and 75 % copper respectively.  相似文献   

3.
Se80?x Te20Zn x (x?=?2, 4, 6, 8, and 10) glasses have been prepared using conventional melt quenching technique. The kinetics of phase transformations (glass transition and crystallization) have been studied using differential scanning calorimetry (DSC) under non-isothermal condition at five different heating rates in these glasses. The activation energy of glass transition (E t), activation energy of crystallization (E c), Avrami exponent (n), dimensionality of growth (m), and frequency factor (K o) have been investigated for the better understanding of growth mechanism using different theoretical models. The activation energy is found to be highly dependent on Zn concentration. The rate of crystallization is found to be lowest for Se70Te20Zn10 glassy alloy. The thermal stability of these glasses has been investigated using various stability parameters. The values of these parameters were obtained using characteristic temperatures, such as glass transition temperature T g, onset crystallization temperature T c, and peak crystallization temperature T p. In addition to this, enthalpy-released during crystallization has also been determined. The values of stability parameters show that the thermal stability increases with the increase in Zn concentration in the investigated glassy samples.  相似文献   

4.
New mixed bismuth monohalides Bi4BrxI4–x (x = 1, 2, or 3) were prepared for the first time by the reactions of bismuth metal with bismuth trihalides taken in stoichiometric amounts. Their crystal structures were established by single-crystal X-ray diffraction analysis. The Bi4Br3I and Bi4BrI3 compounds are isostructural and crystallize in the orthorhombic system, and Bi4Br2I2 crystallizes in the monoclinic system. The crystal structures of all three phases contain one-dimensionally infinite molecular chains consisting of the [Bi4X4] fragments whose structures are identical with those of the individual Bi4I4 and Bi4Br4 molecules. The molecules are packed in layers. Different packing modes of the layers were found for different bismuth monohalides. The Bi4ClI3 compound, which is apparently structurally similar to Bi4Br3I and Bi4BrI3, was also prepared.  相似文献   

5.
Complex phosphates of titanium, chromium, and metals(2+) of the general formula M0.5(1 + x )Cr x Ti2 ? x (PO4)3 (M = Mg, Ca, Mn, Ni, Sr, Ba, and Pb) were synthesized. Their phase formation was studied by means of X-ray powder diffraction, electron probe microanalysis, differential thermal analysis, and IR spectroscopy. Individual phases and solid solutions crystallizing in kosnarite and langbeinite structure types were identified; their crystallographic parameters were calculated. The catalytic properties of phosphates Ca0.5(1 + x )Cr x Ti2 ? x (PO4)3 in methanol conversion were studied.  相似文献   

6.
IntroductionInrecentyears ,withthedevelopmentofallsortsofcellularphones ,camcorders ,laptopcomputers ,thelithium ionsecondarybatteriesbasedontheuseoflithi um manganese oxideLiMn2 O4 1,2 haveattractedmuchat tention .ButtheLiMn2 O4 cathodematerialhasadisad vantageof…  相似文献   

7.
Russian Journal of Electrochemistry - Vanadate phosphates LiZr2(VO4)x(PO4)3 – x are synthesized by the sol-gel technique with subsequent annealing and studied using X-ray diffraction...  相似文献   

8.
In this paper, Eu3+-doped Ca3(P x V1 ? x O4)2 (x = 0.1, 0.4, 0.7) nanophosphors were synthesized in the presence of sodium dodecyl benzene sulfonate (SDBS). The products present interesting and regular morphologies under the mild conditions. For Ca3(P x V1 ? x O4)2: Eu3+, they have the similar phase and their morphologies vary with the content ratio of P to V. Furthermore, the luminescence behavior of Eu3+ has been investigated in this one kinds of matrices. In Ca3(P x V1 ? x O4)2: Eu3+, the 5 D 0-7 F 2 emissions of Eu3+ were the strongest, indicating that the Eu3+ site is without inversion symmetry, the host compositions with different molar ratio of P to V have; great influence on the luminescent performance. Among those products, The value of I 615/I 593 for Eu3+ in Ca3(P0.7V0.3O4)2 host lattice is the biggest. The substitution of PO 4 3? for VO 4 3? increase the ratio of surface Eu cations as well as the value of I 615/I 593 of Eu3+.  相似文献   

9.
MZr2(AsO4)3 arsenates and MZr2(AsO4) x (PO4)3 ? x arsenate phosphates (M = K, Rb, Cs) have been obtained by sol-gel synthesis followed by heat treatment and have been characterized by X-ray diffraction, electron probe microanalysis, and IR spectroscopy. Continuous series of substitutional solid solutions form in the MZr2(AsO4) x (PO4)3 ? x systems (0 ≤ x ≤ 3). The solid solutions have a kosnarite structure (KZr2(PO4)3, space group \(R\bar 3c\) ). The crystal structures of MZr2(AsO4)3 and MZr2(AsO4)1.5(PO4)1.5 have been refined by full-profile analysis. The structural frameworks of these phases are built from ZrO6 octahedra and AsO4 tetrahedra or (As,P)O4 tetrahedra statistically populated by arsenic and phosphorus atoms. The alkali metal atoms occupy extraframework sites. The effect of the crystal chemical properties of alkali metals on the formation of the structures of MZr2(AsO4)3 arsenates (M = Li-Cs) and MZr2(AsO4) x (PO4)3 ? x solid solutions is discussed.  相似文献   

10.
CuCr1.5Sb0.5S4 ? x Se x (x = 0, 0.5, 3.5, 4) metal chalcogenides with spinel structure have been synthesized for the first time. Unit cell parameters have been calculated and magnetic properties have been measured for the samples prepared. These samples are nonuniform antiferromagnets having Neel temperatures of T N = 21?C30 K.  相似文献   

11.
Nanosized carbon-coated Li1−3x La x FePO4 composites were synthesized using a fast, easy, microwave assisted, room-temperature, solid-state method. A lanthanum precursor was used to improve the electronic conductivity of LiFePO4. The particle structure of the as-synthesized samples was observed using transmission electron microscopy. The results indicated that a uniform and continuous carbon layer was formed on the surface of Li1−3x La x FePO4 particles. Electrochemical techniques, such as cyclic voltammetry, charge/discharge test, and electrochemical impedance spectroscopy were used to investigate the electrochemical performance of the samples. The results of electrochemical measurements revealed that the carbon coating and lanthanum doping provided an initial discharge capacity of 145 mA h/g with excellent rate capacity and long cycling stability. These advantages, coupled with the low cost, the high thermal stability, and the environmental friendliness of the raw materials, render Li1−3x La x FePO4/C composites attractive for practical and large-scale applications.  相似文献   

12.
A new quaternary Gd4Ni2Sb1.07(1)Si1.93(1) phase was synthesized by arc-melting and its structure was determined through single crystal X-ray diffraction techniques. It crystallizes in an orthorhombic unit cell (the Pnma space group) with a = 11.1735(9), b = 4.2054(2) and c = 16.711(1) Å and represents a new structure type. The isostructural Gd4Ni2BiSi2 phase was obtained and characterized using the powder X-ray diffraction techniques: Pnma space group, a = 11.2715(2), b = 4.2046(1) and c = 16.7421(3) Å. By the means of electron microprobe analysis, Sb/Si and Bi/Si solid solutions were proven to exist for corresponding phases, and their general formulas can be given as Gd4Ni2SbxSix and Gd4Ni2BixSix. Gd4Ni2Sb1.07Si1.93 and Gd4Ni2BiSi2 order ferromagnetically at 93 K and 46 K, respectively.  相似文献   

13.
The solid solutions K2Y1?x Tb(Tm) x (MoO4)(PO4) and K2Y1?x Tm x (MoO4)(PO4)0.95(VO4)0.05 were synthesized, which are isostructural and crystallize in the orthorhombic crystal system (space group Ibca). The luminescence intensity of the terbium-containing samples increases with increase in the terbium content. The thulium-containing samples are characterized by intense luminescence in the blue spectral region and concentration quenching of luminescence. The introduction of the vanadate anion adversely affects the luminescence intensity.  相似文献   

14.
Subsolidus region of the ternary systems Rb2MoO4-AMoO4-R2(MoO4)3, in which variable-composition phases Rb1 ? x A1 ? x R1 + x (MoO4)3 crystallizing in the monoclinic system (space group C2) are formed, was studied. Their crystallographic parameters were calculated; temperature dependences of the electrical conductivity, dielectric constant, and dielectric loss tangent were analized.  相似文献   

15.
Substitution of Ca by La in initial cubic double perovskite Ba4(Ca2Nb2)O11[VO]1 allowed obtaining phases with a similar structure with a lower content of structural oxygen vacancies, Ba4(La x Ca2 ? x Nb2)O11 + 0.5x [VO]1 ? 0.5x (x = 0.5, 1, 1.5, 2). The impedance technique was used to measure the temperature dependences of conductivity in the atmosphere of dry and humid air. Transport numbers determined using the EMF method in an oxygen-air and water steam concentration cells point to the predominantly hole nature of conductivity in the high-temperature region (T > 600°C) and to predominance of proton conductivity in the low-temperature region. Activation energies of hole and proton conductivity were calculated. Thermogravimetric measurements were carried out under heating from 25 to 1000°C with simultaneous mass-spectrometric determination of evolved H2O and CO2. The properties of the studied Ba4(La x Ca2 ? x Nb2)O11 + 0.5x (x = 0.5, 1, 1.5, 2) phases were compared with the earlier studied Ba4 ? x La x (Ca2Nb2)O11 + 0.5x phases with similar lanthanum content.  相似文献   

16.
A series of La2 − x Sr x CuO4 (x = 0.0, 0.05, 0.15, 0.25 and 0.35) compounds was investigated for the use of direct electrochemical reduction of NO in an all-solid-state electrochemical cell. The materials were investigated using cyclic voltammetry in 1% NO in Ar and 10% O2 in Ar. The most selective electrode material was La2CuO4, which had an activity of NO reduction that was 6.8 times higher than that of O2 at 400 °C. With increasing temperature, activity increased while selectivity decreased. Additionally, conductivity measurements were carried out, and the materials show metallic conductivity behavior which follows an adiabatic small polaron hopping mechanism.  相似文献   

17.
In this paper, Y1 ? x La x PO4:Eu3+ (x = 0.5, 0.7, and 0.3) nanophosphors were synthesized by a rather simple method. The products present different morphologies. For Y1 ? x La x PO4:Eu3+, they have similar phase composition of a mixture of monoclinic LaPO4 and tetragonal YPO4. Furthermore, the luminescence behavior of Eu3+ has been investigated in this type of matrices. In Y1 ? x La x PO4:Eu3+, the 5D0-7F1 magnetic dipole transition is dominant, indicating that the Eu3+ site is inversion symmetry. The difference in the Eu-O charge transfer (CT) band with La3+ ion concentration suggests the difference in the ionicity of the Eu-O bond. Among those products, the red to orange intensity ratio (R/O) of 5D0-7F2 to 5D0-7F1 value of Eu3+ is different, furthermore, for La3+ x = 0.3, the R/O value of Eu3+ is the biggest on the contrary, indicating that the inversion symmetry Eu3+ is lowest.  相似文献   

18.
Wurtzite-type Zn1?x Mn x O (x = 0, 0.03, 0.05, 0.07) nanostructures were successfully synthesised using a simple microwave-assisted hydrothermal route and their catalytic properties were investigated in the cellulose conversion. The morphology of the nanocatalysts is dopant-dependent. Pure ZnO presented multi-plate morphology with a flower-like shape of nanometric sizes, while the Zn0.97Mn0.03O sample is formed by nanoplates with the presence of spherical nanoparticles; the Zn0.95Mn0.05O and Zn0.93Mn0.07O samples are mainly formed by nanorods with the presence of a small quantity of spherical nanoparticles. The catalyst without Mn did not show any catalytic activity in the cellulose conversion. The Mn doping promoted an increase in the density of weak acid sites which, according to the catalytic results, favoured promotion of the reaction.  相似文献   

19.
Polycrystalline ceramic samples of Bi4V2?xMexO11 (Me = Nb, Zr, Y and Cu and x = 0.0 and 0.02) have been synthesized by standard solid state reaction method using high purity oxides. The formation of the compounds have been analysed by X-ray diffraction method. The dielectric constant, dielectric loss and AC conductivity as a function of frequency and temperature have been measured. The dielectric studies indicate that the material is highly lossy and hence its AC conductivity increases with the increase of temperature. The DC conductivity of material has been measured as a function of temperature from room temperature to 380 °C and its activation energy was calculated using the relation σ = σ 0exp (?E a/kT). The modulated differential scanning calorimetry has been used to investigate the effect of substitution on the heat capacity and heat flow of the compounds. The results are discussed in detail.  相似文献   

20.
The lithium-conducting solid electrolytes in the Li4 ? 2x Cd x GeO4 (0 ≤ x ≤ 0.6) system are synthesized. Their crystal structure and temperature and concentration dependences of conductivity are studied. The specimens with the highest conductivity have a γ-Li3PO4-derivative structure. The solid solutions with x = 0.15–0.25 are stable at the room temperature, whereas the specimens with x ≥ 0.3 decompose yielding Li2CdGeO4 below 310 ± 10°C. Li3.6Cd0.2GeO4 solid solution exhibits the highest conductivity (5.25 × 10?2 S cm?1 at 300°C). The factors, which affect the conductivity of synthesized solid electrolytes, are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号