首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A modified sol-gel process was studied as applied to synthesize a lithium-conducting solid electrolyte of composition Li1.3Al0.3Ti1.7(PO4)3 (LATP) using water-soluble salts Al(NO3)3 · 9H2O, LiNO3 · 3H2O, and (NH4)2HPO4 and a titanium(IV) citrate complex. As-synthesized samples were characterized using X-ray powder diffraction, DSC/TG, SEM, and impedance spectroscopy. Sintering of as-synthesized amorphous powders at 700°C was found to yield LATP with crystallite sizes of 42–48 nm. Ionic conductivity of the electrolyte measured in the frequency range 25–106 Hz in disks having 86–90% density that were sintered at 1000°C was (3–4) × 10?4 S/cm. Temperature-dependent ionic conductivity was studied in the range 25–200°C. The activation energy of conduction was determined for LATP.  相似文献   

2.
Li2FeSiO4/C cathode materials have been prepared using the conventional solid-state method by varying the sintering temperature (650 °C, 700 °C and 750 °C), and the structure and electrochemical performance of Li2FeSiO4/C materials are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic charge–discharge tests, respectively. The results show that Li2FeSiO4 nano-crystals with a diameter of about 6–8 nm are inbedded in the amorphous carbon, and the Li2FeSiO4/C material obtained at 700 °C exhibits an initial discharge capacity of 195 mA?h g?1 at 1/16 C in the potential range of 1.5–4.8 V. The excellent electrochemical performance of Li2FeSiO4/C attributes to the improvement of conductivity and reduction of impurity by the optimization of the sintering temperature.  相似文献   

3.
The process for producing the electrode material LiCoPO4 modified by the lithium-conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) was studied. To create a composite consisting of an electrochemically active substance and an electrically conductive additive distributed uniformly between LiCoPO4 particles, a peroxide solution of a LATP precursor was used. After annealing at 700°C, the two-phase composite LiCoPO4/LATP was obtained, the conductivity of which was two orders of magnitude higher than that of binary lithium cobalt phosphate at room temperature.  相似文献   

4.
Dependence of the density of the Li1.3Al0.3Ti1.7(PO4)3 (LATP) ceramic on thermal treatment modes was studied. The conditions in which ceramic samples with density exceeding 90% are obtained were determined. It was found that the bulk ionic conductivity of LATP upon sintering at 1000°C for 2–6 h is (1.1–1.3) × 10–3 S cm–1 at 20°C, which corresponds to the maximum values for lithium-aluminum titanophosphate.  相似文献   

5.
Nanocrystalline magnesium chromite spinel was synthesized through hydrothermal reaction of metal nitrate solutions in stoichiometric amount at different pH, temperature and time intervals. The synthesized products were characterized for crystallinity, phase identification, and surface morphology by X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD patterns showed that as-synthesized product remained amorphous up to 250 °C. However, well-crystallized magnesium chromite spinel structure is formed after calcination at 850 °C. Rietveld refinement study confirms the formation of single-phase cubic structure MgCr2O4 with lattice parameter a = 8.3347 Å, and Fd3m space group. The as-processed MgCr2O4 products showed extensive XRD line broadening, and the mean crystallite size of such crystals was found to be mainly in size range of 85–124 nm. Surface SEM images of calcined specimens revealed that the matrix is uniform, and no separation of secondary phase was detected. Thermal stability was examined by thermogravimetry (TG), differential thermal analysis (DTA), and differential scanning calorimetry. TG/DTA reveals that MgCr2O4 is thermally stable above 700 °C. Fourier transform infrared (FTIR) spectra studies shows two strong bands, one around 600 cm?1 which is attributed to the intrinsic vibrations of tetrahedral and other at 400 cm?1 is due to octahedral one. FTIR confirms the formation of metal oxides. The bandgap energy was estimated by absorption spectroscopy in ultraviolet–visible range and was found to be 0.693 eV for MgCr2O4 specimen sintered at 1,000 °C. Isothermal shrinkage characteristic and coefficient of thermal expansion were determined by dilatometry. The powder specimens showed excellent densification at 1,250 °C temperature and uniformly fine grain sintered ceramics (>90 % relative density) with submicron grain size (2–5 μm) were obtained after sintering at 1,000–1,250 °C. Impedance studies were carried out at room temperature and equivalent circuit model (R 1 Q 1) (R 2 Q 2) (R 3 Q 3) is used to explain different relaxation processes. We report largest impedance values i.e., 6.74 × 108 Ω, reduced dielectric constant (≈1.0), and low tangent loss (0.8) for MgCr2O4 sintered at 1,250 °C.  相似文献   

6.
Heating hydrous manganese (II) hydroxide gel at 85 °C for 12 hours produces Mn3O4 nanoparticles. They were characterized by X-ray powder diffraction (XRD) and infrared spectroscopy (FTIR). The particle size estimated from the SEM and X-ray peak broadening is approximately 32 nm, showing them to be nanocrystalline. EPR measurements confirm a typical Mn2+signal with a highly resolved hyperfine structure.   相似文献   

7.
Synthesis of poly(o-anisidine) doped with various protonic acids by using ammonium persulphate as oxidizing agent were carried out in aqueous acid media. Influences of protonic acids on the physicochemical properties were investigated. The various process parameters were optimized to obtain poly(o-anisidine) in the conducting salt phase form. The results are discussed with references to different protonic acids. It was observed that poly(o-anisidine) is highly soluble in organic solvents, such as m-cresol and N-methyl pyrrolidinone (NMP). The polymers were characterized by UV-Visible, FTIR, SEM, XRD and conductivity measurements. A result shows that, different types of dopant acids HCl, H2SO4 and HClO4 affect the morphology and electrical conductivity of the polymer. The electrical conductivity of the polymer follows the order HCl >H2SO4>HClO4. Thus the effect of dopant ion type and the size of its negative ions influence the physico-chemical properties. UV-Vis absorption spectra shows peaks at 740–783 nm with shoulder at 380–420 nm as characteristic peaks for the emeraldine salt (ES) phase of poly(o-anisidine) POA. The FTIR spectra show a broad and intense band at ~2800–3001 cm?1 and ~1159–1170 cm?1 that account for the formation of ES phase of the polymer. The X-ray diffraction spectra show a characteristic peak at 20–30o, 2θ range which reveals partial crystalline structure. The conductivity of the poly(o-anisidne) salt was found to be in the range of 10?3 to 10?2 S/cm. SEM studies of poly(o-anisidine) doped with HCl shows the continuous granular uniform morphology with sub-micrometer evenly distributed particles of size ~100–200 nm.  相似文献   

8.
Li2O–Al2O3–TiO2–P2O5 (LATP) glass was fabricated by conventional melt quenching route. Glass transition temperature (T g = 296 °C) and crystallization temperatures (T C1,2) were obtained from thermal analysis. LATP glass was converted to glass–ceramic by heat treatment in the range 550–950 °C for 6 h. X-ray diffraction analysis revealed LiTi2(PO4)3 as a major phase. Ionic conductivity increased monotonically with concentration, reaching a maximum of ~10−4 S/cm. AlPO4 phase was detected in samples heat-treated above 850 °C. Its presence decreased the conductivity, suggesting LiTi2(PO4)3 phase as main contributor to high ionic conductivity. NMR spectra confirmed the presence of mobile 7Li ions in the entire sample series and also gave some information on the structure and dynamics of conductivity.  相似文献   

9.
Nanosized zinc aluminate spinel (gahnite, ZnAl2O4) powders were prepared by sol−gel technique at low sintering temperatures. Aluminium-sec-butoxide [Al(OsBu)3] and zinc nitrate hexahydrate Zn(NO3)2 . 6H2O were used as starting materials. Gels with and without chelating agent were prepared. Ethyl-acetoacetate (C6H10O3) was used as a chelating agent in order to control the rate of hydrolysis of Al(OsBu)3. The dried gels and thermally treated samples were characterized by means of Differential Thermal Analysis and Thermo-Gravimetric Analysis (DTA, TGA), X-ray Diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR) and Transmission Electron Microscopy (TEM). The surface area was measured by Brunauer-Emmet-Teller (BET) adsorption–desorption isotherms. It has been established that chelation enables to obtain a transparent gel. The thermal evolution of gels was characterized by two crystallization processes in the range 200–400 °C and 600–700 °C. Both processes yielded pure ZnAl2O4 as evidenced by XRD, i.e. zinc aluminate spinel powders were produced by gel heat-treatment at temperatures as low as 300 °C. The average gahnite crystallite size for the samples sintered in the temperature range of 400–1000 °C has been calculated from the broadening of XRD lines revealing that nanocrystalline powders were prepared. The surface areas measured for the samples fired at 700 °C for 2 h were 43.1 and 62.6 m2 g−1, for sample without and with the chelating agent, respectively. TEM micrographs confirmed the nano-scale size of particles.  相似文献   

10.
Ceramics of the La0.88Sr0.12Ga0.82Mg0.18O3 ? δ solid electrolyte was obtained by magnetic-pulse compaction (MPC) of a powder synthesized using the self-propagating high-temperature synthesis technique with further sintering at 1380°C. Conductivity and its change in time were studied. It was shown that conductivity of fresh samples coincides with conductivity of ceramics obtained using the classical solid-phase synthesis. It was established that conductivity of electrolyte decreased by 18% during isothermal exposure at 700°C for 1 year.  相似文献   

11.
It was found that 20 : 5 and 40 : 10 siloxane block copolymers of the general formula { (CH3)2SiO}m {[C6H5SiO1.5]a [C6H5SiO · (OH)]1 ? a}n are structurally different: the 20 : 5 siloxane block copolymers consisted of 8–10 pairs of blocks, whereas the 40 : 10 siloxane block copolymers consisted of 1–2 pairs of blocks. The diffraction patterns of the initial 20 : 5 siloxane block copolymers were characterized by two reflections with 2θ maximums at 7.7° and 12.2°, whereas the diffraction patterns of the initial 40 : 10 siloxane block copolymers were characterized by a reflection with a 2θ maximum of ~8.3°. After irradiation to a dose higher than the dose of gelation (~100 kGy), two reflections with maximums at ~7.6° and 12.5° appeared in the diffraction pattern of 40 : 10 siloxane block copolymers. This suggests a structural rearrangement and offers possibilities for the radiation crosslinking and regulation of the supramolecular structure of block copolymers.  相似文献   

12.
Highly compact (99%) solid electrolyte Ce0.8Gd0.2O1.9 with submicron (0.3 μm) grains is synthesized. The dilatometric (20–850°C) and conductivity (180–350°C) measurements are performed on the electrolyte in air and as a function of the partial oxygen pressure \(p_{O_2 } \) (0.21?1×10?25 atm) at 600, 700, and 800°C. An inflection is found in the temperature dependences of the thermal coefficient of linear expansion and conductivity (impedance measurements) at ~230°C, which is the evidence for a phase transition. The activation energies for conduction in the grain bulk and boundaries differ only slightly, indicating that the grain boundaries’ resistance is caused not by the precipitation of the second phase at the boundaries, but most probably by the presence of intergranular nanopores. The dilatometric measurements confirm a significant increase in the linear dimensions of Ce0.8Gd0.2O1.9 in the reducing atmospheres with a parallel increase in its electron conductivity. The electron conductivity and specific elongation increase proportionally to \(p_{O_2 }^{ - 1/4} \) at all temperatures. The \(p_{O_2 } \) values, at which the transport numbers of ions t i = 0.5, are determined. They are 10?22.5, 10?20, and 10?18 atm at 600, 700, and 800°C, respectively.  相似文献   

13.
The preparation and characterization of blended solid polymer electrolyte 49% poly(methyl methacrylate)-grafted natural rubber (MG49):poly(methyl methacrylate) (PMMA) (30:70) were carried out. The effect of lithium tetrafluoroborate (LiBF4) concentration on the chemical interaction, structure, morphology, and room temperature conductivity of the electrolyte were investigated. The electrolyte samples with various weight percentages (wt.%) of LiBF4 salt were prepared by solution casting technique and characterized by Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy. Infrared analysis demonstrated that the interaction between lithium ions and oxygen atoms occurred at symmetrical stretching of carbonyl (C=O) (1,735 cm?1) and asymmetric deformation of (O–CH3) (1,456 cm?1) via the formation of coordinate bond on MMA structure in MG49 and PMMA. The reduction of MMA peaks intensity at the diffraction angle, 2θ of 29.5° and 39.5° was due to the increase in weight percent of LiBF4. The complexation occurred between the salt and polymer host had been confirmed by the XRD analysis. The semi-crystalline phase of polymer host was found to reduce with the increase in salt content and confirmed by XRD analysis. Morphological studies by SEM showed that MG49 blended with PMMA was compatible. The addition of salt into the blend has changed the topological order of the polymer host from dark surface to brighter surface. The SEM analyses supported the enhancement of conductivity with the addition of salt. The conductivity increased drastically from 2.0 to 3.4?×?10?5 S cm?1 with the addition of 25 wt.% of salt. The increase in the conductivity was due to the increasing of the number of charge carriers in the electrolyte. The conductivity obeys Arrhenius equation in higher temperature region from 333 to 373 K with the pre-exponential factor σ o of 1.21?×?10?7 S cm?1 and the activation energy E a of 0.46 eV. The conductivity is not Arrhenian in lower temperature region from 303 to 323 K.  相似文献   

14.
Undoped and silver-doped TiO2 nanoparticles (Ti1?x Ag x O2, where x?=?0.00?C0.10) were synthesized by a sol?Cgel method. The synthesized products were characterized by X-ray diffraction (XRD), particle size analyzer (PSA), scanning electron microscope (SEM), and UV?CVisible spectrophotometer. XRD pattern confirmed the tetragonal structure of synthesized samples. Average crystallite size of synthesized nanoparticles was determined from X-ray line broadening using the Debye?CScherrer formula. The crystallite size was varied from 8 to 33?nm as the calcination temperature was increased from 300 to 800?°C. The incorporation of 3 to 5% Ag+ in place of Ti4+ provoked a decrease in the size of nanocrystals as compared to undoped TiO2. The SEM micrographs revealed the agglomerated spherical-like morphology of particles. SEM, PSA, and XRD measurements show that the particles size of the powder is in nanoscale. Optical absorption measurements indicated a red shift in the absorption band edge upon silver doping. Direct allowed band gap of undoped and Ag-doped TiO2 nanoparticles measured by UV?CVis spectrometer were 3.00 and 2.80?eV, respectively, at 500?°C.  相似文献   

15.
The effect of partial substitution of Zr4+ ions for Ge4+ ions in highly conducting lithium-cationic solid electrolyte Li3.75Ge0.75P0.25O4 is studied. It is found that the introduction of zirconium ions considerably raises the conductivity of basic electrolyte in the high-temperature range. For the optimal composition, the conductivity is 2.82 × 10−1 S cm−1 at 400°C and 1.55 S cm−1 at 700°C. Possible reasons for the effects are discussed.  相似文献   

16.
Bi2Te3 nanoparticles (NPs) have been synthesized at 50?°C by a low-cost wet chemical route. The structural properties of product sample were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy. Thermal properties of product sample were investigated by differential scanning calorimetry (DSC), thermogravimetric (TG), and transient plane source techniques. The XRD and selected area electron diffraction of Bi2Te3 NPs result showed the polycrystalline nature with a rhombohedral (R3m) structure of the nanocrystallites. The average grain size of Bi2Te3 NPs was found to be about 30?nm by XRD and TEM measurements. DSC result shows one endothermic peak and one exothermic peak. TG result shows that only 48?% mass loss has occurred in Bi2Te3 sample. The obtained lower thermal conductivity of Bi2Te3 NPs is about 0.3?W m?1 K?1 at room temperature, which is caused by considering the crystalline nature of this material.  相似文献   

17.
Nanocrystalline spinel CuAl2O4 powders were prepared by sol-gel method from nitrate Cu(NO3)2·3H2O, Al(NO3)3·9H2O and complex C6H8O7·H2O. Sintering was carried out at 400, 500, 600, 700, 800°C respectively for 2 h in air. The XRD patterns started to appear CuAl2O4 peaks after sintering of 500°C and consist of only CuAl2O4 peaks as spinel crystal after sintering of 700°C. The powders were analyzed by TEM and UV-vis diffuse reflectance spectrum to be round, about 10–30 nm in size and Eg=1.77 eV. Photodegradation property of nanocrystalline CuAl2O4 powders was investigated by using methyl orange as model pollutant and mercury lamp (λ>400 nm) as energy source. The results indicated that CuAl2O4 powders sintered at 700°C had the excellent visible photocatalytic property. Under the irradiation of visible light, methyl orange could be degraded 97% in 120 min.  相似文献   

18.
Y2O3: Eu3+,Tb3+ transparent, high density and optical quality thin films were prepared by the sol–gel dip-coating technique. Yttrium (III) 2,4-pentadionate was used as a precursor by its hydrolysis in ethanol. The doping agents were incorporated in the form of europium and terbium nitrate. Structural, morphological and optical properties of prepared films were investigated for different annealing temperatures in order to establish the ideal processing route that enhances the luminescent properties. X-ray diffraction (XRD) analysis shows the cubic phase for 10-layer films and annealing temperatures higher than 500°C. At 700°C, highly densified (4.52 g cm−3) and very smooth films (1.4 nm at 700°C) are produced, composed of crystallites with a grain size of 11 nm. The film thickness, refractive index and porosity, as well as the luminescent properties, were found to vary with treatment temperature.  相似文献   

19.
Electrochemical properties of metal oxide have a strong correlation with the crystalline structures. In this work, the effect of calcination temperature on the phase evolution and electrochemical properties of Sm2O3 was systematically evaluated. The results demonstrate that the sample calcinated at 700 °C (SM-700) is composed of a pure cubic phase while it begins to convert into a monoclinic phase at a temperature above 800 °C and fully converts into a monoclinic phase at 1100 °C. Moreover, the evolution process causes atomic redistribution, and more oxygen vacancies are formed in cubic phase Sm2O3, contributing to the improved ionic conductivity. The ionic conductivity of 0.138 S cm−1 and maximum power density of 895 mW cm−2 at 520 °C are achieved using SM-700 as electrolyte for protonic ceramic fuel cell (PCFC). The cubic structure remains stable in the durability testing process and the SM-700 based fuel cell delivers enhanced stability of 140 mW cm−2 for 100 h. This research develops a calcination evolution process to improve the ionic conductivity and fuel cell performance of the Sm2O3 electrolyte for stable PCFC.  相似文献   

20.
We propose a process for the synthesis of ZnO/NiO nanocomposites from ethanolic solutions by means of consecutive generation of ZnO and NiO nanoparticles. X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) show that in the range 400–900°C, nanocomposites are two-phase mixtures of particles of hexagonal and cubic phases with ZnO dissolved in NiO; at 1000°C, Ni0.5Zn0.5O single-phase solid solution is generated. The mean particle size determined from TEM data and diffraction peak broadening increases with rising temperature. In the cathodoluminescence spectrum of a sample annealed at 400°C, the luminescence peak shifts to the UV. Specific magnetization versus magnetic field measurements in nanocomposites show hysteresis; the coercive force reaches 200 Oe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号