首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the enantiomer migration order (EMO) of norephedrine (NEP) in the presence of various CDs was investigated by CE. NMR and CE techniques were used to analyze the mechanism of the chiral recognition between NEP enantiomers and four CDs, i.e., native α-CD, β-CD, heptakis(2,3-di-O-acetyl-6-O-sulfo)-β-CD (HDAS-β-CD), and heptakis(2,3-di-O-methyl-6-O-sulfo)-β-CD (HDMS-β-CD). EMO was reversed in the presence of α-CD and β-CD, although only minor differences in the structures of the complexes formed between NEP and these CDs could be derived from rotating frame nuclear Overhauser experiments (ROESY). The complexes between the enantiomers of NEP and the sulfated CDs, HDMS-β-CD, and HDAS-β-CD, were substantially different. However, EMO of NEP was identical in the presence of these CDs. HDAS-β-CD proved to be the most suitable chiral selector for the CE enantioseparation of NEP.  相似文献   

2.
Diquats, derivatives of the widely used herbicide diquat, represent a new class of functional organic molecules. A combination of their special electrochemical properties and axial chirality could potentially result in their important applications in supramolecular chemistry, chiral catalysis, and chiral analysis. However, prior to their practical applications, the diquats have to be prepared in enantiomerically pure forms and the enantiomeric purity of their P- and M-isomers has to be checked. Hence, a chiral capillary electrophoresis (CE) method has been developed and applied for separation of P- and M-enantiomers of 11 new diquats. Fast and better than baseline CE separations of enantiomers of all 11 diquats within a short time 5–7 min were achieved using acidic buffer, 22 mM NaOH, 35 mM H3PO4, pH 2.5, as a background electrolyte, and 6 mM randomly sulfated α-, β-, and γ-cyclodextrins as chiral selectors. The most successful selector was sulfated γ-cyclodextrin, which baseline separated the enantiomers of all 11 diquats, followed by sulfated β-cyclodextrin and sulfated α-cyclodextrin, which baseline separated enantiomers of 10 and nine diquats, respectively. Using this method, a high enantiopurity degree of the isolated P- and M-enantiomers of three diquats with a defined absolute configuration was confirmed and their migration order was identified.  相似文献   

3.
4.
This review surveys the separation of enantiomers by capillary electrophoresis using cyclodextrins as chiral selector. Cyclodextrins or their derivatives have been widely employed for the direct chiral resolution of a wide number of enantiomers, mainly of pharmaceutical interest, selected examples are reported in the tables. For method optimisation, several parameters influencing the enantioresolution, e.g., cyclodextrin type and concentration, buffer pH and composition, presence of organic solvents or complexing additives in the buffer were considered and discussed. Finally, selected applications to real samples such as pharmaceutical formulations, biological and medical samples are also discussed.  相似文献   

5.
This study used capillary electrophoresis with fluorescence detection- and a partial-filling mode-based method for chiral separation of ofloxacin. The deoxyribonucleic acid oligonucleotides with different base sequences were studied as potential chiral selectors including deoxyribonucleic acid tetrahedron, G-quadruplex, and G-riched double-strand deoxyribonucleic acid. Under the optimized conditions, all the deoxyribonucleic acid chiral selectors exhibited excellent chiral separation capabilities with a resolution higher than 1.5. The electrophoretic behavior of the ofloxacin enantiomer might result from the intermediate conjugate with different stabilities between chiral selectors and analytes by a combination of the hydrogen bond and spatial recognition structure. Moreover, satisfactory repeatability regarding run-to-run and interday repeatability was obtained, and all the relative standard deviation values of migration times and resolutions were below 4% (n = 6). Conclusively, both spatial structure and arrangement of the G bases potentiated the chiral separation capability of deoxyribonucleic acid for ofloxacin enantiomer. This work offered a stepping stone for enantioseparation using deoxyribonucleic acid as chiral selectors.  相似文献   

6.
7.
The prevalence of new psychoactive substances (NPS) has been increasing during the last decade as well as their constant growth of availability across the whole world. Regardless of the potential health hazard, NPS (often racemic compounds) are frequently sought after and abused for their psychoactive effects that may differ for individual enantiomers. In this work, capillary electrophoresis was used for the chiral separation of a mixture of eleven psychoactive chiral amines using β-cyclodextrin and carboxymethyl-β-cyclodextrin as chiral selectors at various concentrations. Chiral separation was successful for all the analytes studied. A mixture of these analytes was subsequently analyzed under optimal conditions, i.e., when using 20 mmol/L carboxymethyl-β-cyclodextrin in 50 mmol/L sodium phosphate buffer, pH 2.5. In this case, chiral separation occurred in nine out of eleven analytes. To our best knowledge, we achieved enantioseparations of seven analyzed compounds by CE for the first time.  相似文献   

8.
Two series of amino acid derivatives and phenylamines were used to evaluate the potential of highly sulfated cyclodextrins (HS-CDs) for the screening for chiral separations by capillary electrophoresis (CE). HS-CDs showed to be very versatile and to exhibit very high enantioselectivity. The use of short-end injection allowed to reduce dramatically the analysis time. From the results obtained, a scheme for the rapid screening of enantiomeric molecules was developed and applied to various chiral drugs. Results are very satisfying as almost all compounds (62 out of 67) could be baseline-resolved. Usually, less than three experiments were necessary to obtain very good separation.  相似文献   

9.
Uncharged cyclodextrins were tested as chiral selectors for the enantiomeric separation of 13 glycyl dipeptides with capillary electrophoresis. Initial experiments were performed on 10 mmol/L of a cyclodextrin in 0.1 mol/L phosphoric acid -0.088 mol/L triethanolamine. Some of the resolved dipeptides were nonaromatic, which is noteworthy since, to our knowledge, no examples of the separation of small, nonaromatic molecules have been published. Mobility difference plots for Gly-DL-Leu and Gly-DL-Phe with heptakis(2,6-di-O-methyl)-beta-cyclodextrin showed relatively flat profiles in a large concentration range, which is an advantage for the development of robust quantitative analytical methods. The use of a background electrolyte (BGE) solution with pH 3.0 gave irreproducible results for two of the dipeptides, the acidic Gly-DL-Asp and Gly-DL-Glu; this pH is not advisable for the development of robust methods for these two peptides. The need for purer chiral selectors was demonstrated by comparing different batches of heptakis(2,6-di-Omethyl)-beta-cyclodextrin from the same supplier. A BGE consisting of malonic acid and triethanolamine was introduced to give better buffer capacity than the original BGE at pH 3.0.  相似文献   

10.
Lin CE  Liao WS  Cheng HT  Kuo CM  Liu YC 《Electrophoresis》2005,26(20):3869-3877
In this study, enantioseparations of five phenothiazines, including promethazine, ethopropazine, trimeprazine, methotrimeprazine, and thioridazine, in CD-modified CZE using dual CD systems consisting of randomly sulfate-substituted CD (MI-S-beta-CD) and a neutral CD as chiral selectors in a citrate buffer (100 mM) at pH 3.0 were investigated. The results indicate that MI-S-beta-CD is an excellent chiral selector for enantioseparation of ethopropazine. The enantiomers of promethazine can also be baseline-resolved with MI-S-beta-CD at concentrations in the range of 0.5-1.0% w/v. On the other hand, thioridazine and trimeprazine interact strongly with neutral CDs. As a result, the enantioselectivity of these two phenothiazines is remarkably and synergistically enhanced with increasing the concentration of neutral CDs in the presence of MI-S-beta-CD and simultaneous enantioseparations of these phenothiazines, except for methotrimeprazine, could favorably be achieved with the use of dual CD systems. Moreover, by varying the concentration of beta-CD or gamma-CD at a fixed concentration of MI-S-beta-CD (0.75% w/v) reversal of the enantiomer migration order of promethazine occurred. This may be attributable to the opposite effects of charged and neutral CDs on the mobility of the enantiomers of promethazine.  相似文献   

11.
The methods of separation of the enantiomers of the chiral drug oxamniquine are compared, between HPLC with either cyclodextrins and their related derivatives as chiral selectors in the mobile phase or immobilisedin a chiral stationary phase (as Cyclobond I and II) and between capillary zone electrophoresis (CZE) where the cyclodextrins are added to the buffer solution. The HPLC experiments, which included structured method optimisation were largely unsuccessful in resolving the enantiomers, with the exception of when a Chiral-AGP protein stationary phase was introduced into the programme. However although this chiral stationary phase provided baseline resolution of the enantiomers the stability of the method was suspect to small changes in the pH (0.2 units). In contrast the CZE method developed for both cyclodextrins and their derivatives gave good resolution of the enantiomers and method stability (R.S.D. <1%, N = 10 on precision). The basis of the interaction mechanism between selector and selectand was shown as a 1:2 relationship of cyclodextrin to analyte by NMR. In addition the polysaccharide, heparin was investigated as a chiral additive and excellent resolution of the oxaminiquine was achieved with 3 mM heparin in 50 mM sodium dihydrogenphosphate (pH 3.0) as buffer in CZE, which also gave a stable procedure. This method allowed the detection of each of the enantiomers in the presence of the other down to 0.23% (m/m). The overall composition of the heparin material from different sources can however be slightly variable and this can result in small differences in resolution capability.  相似文献   

12.
Chiral separations of three hydroxyflavanone aglycones, including 2'-, 3'-, and 4'-hydroxyflavanone, in capillary zone electrophoresis (CZE) using randomly sulfate-substituted beta-cyclodextrin (S-beta-CD) or dual cyclodextrin (CD) systems consisting of S-beta-CD and a neutral CD at low pH were investigated. The results indicate that S-beta-CD is an excellent chiral selector for enantioseparation of 2'-hydroxyflavanone and is a good chiral selector for 3'-hydroxyflavanone. Depending on the concentration of S-beta-CD ranging from 2.0 to 0.75% (w/v), the enantioresolution values were 10.5-19.5 and 1.8-3.4 for 2'- and 3'-hydroxyflavanone, respectively. The enantiomers of 4'-hydroxyflavanone could be effectively separated with S-beta-CD at a concentration of 2.0% (w/v) within 20 min. The enantioselectivity and enantioresolution follow the order 2'-hydroxyflavanone>3'-hydroxyflavanone>4'-hydroxyflavanone. Alternatively, with the addition of sodium dodecyl sulfate (SDS) monomers at low concentrations in the electrophoretic system, enantioselectivity of these hydroxyflavanone aglycones could be enhanced with dual CD systems. In this case, SDS monomer acted as a complexing agent probably first with S-beta-CD and then subsequently with the analytes for increasing the effective electrophoretic mobility of the analytes towards the anode and as a selectivity controller for affecting the selectivity of hydroxyflavanones. Better enantioseparation between 2'-hydroxyflavanone and 3'-hydroxyflavanone could be achieved with a dual CD system consisting of S-beta-CD and gamma-CD than that with S-beta-CD and beta-CD. In addition, possible chiral recognition mechanisms of hydroxyflavanones are discussed.  相似文献   

13.
Eight neutral cyclodextrins were tested for the enantiomeric separation of alanyl and leucyl dipeptides by capillary electrophoresis at pH 3, and seven out of the eight cyclodextrins proved suitable for the separation of one or more of the dipeptide enantiomer pairs. The best results were obtained with heptakis(2,6-di-O-methyl)-beta-cyclodextrin. The dipeptides that were separated were mainly the aromatic and the more lipophilic aliphatic dipeptides. Mobility difference plots at pH 3.0 with malonic acid-triethanolamine as background electrolyte showed that the aromatic dipeptides had higher affinities for the cyclodextrin than the nonpolar, aliphatic dipeptides. The results suggested that, under the conditions applied, the C-terminal amino acid rather than the N-terminal one is involved in the chiral discrimination.  相似文献   

14.
The enantiomeric separation of ofloxacin enantiomers (OFLX) was achieved by using capillary electrophoresis partial-filled with Escherichia coli, Pseudomonas aeruginosa (Gram-negative), and Staphylococcus aureus (Gram-positive) as chiral selectors. Experimental parameters, including the concentration of background electrolyte, applied voltage, length of the filled bacteria plug, and pH of the buffer, were intensively investigated. Baseline separation of OFLX could be achieved within 7 min by using E. coli and P. aeruginosa as chiral selectors under the following conditions: electrophoretic buffer composed of 10 mM phosphate buffer at pH 7.4, applied voltage at 15 kV, and the bacteria (6.0 × 10(8) cells/mL) were injected into the capillary by gravity with injection height of 17.5 cm for 180 s (E. coli), 300 s (P. aeruginosa), and 300 s (S. aureus), respectively. E. coli and P. aeruginosa had better chiral selectivity for OFLX than S. aureus, which was in good agreement with OFLX having better antimicrobial activity on Gram-negative rather than Gram-positive bacteria. A novel method was developed for the enantioselective separation of enantiomers using bacteria as chiral selectors, which provides a new approach for antimicrobials enantioselective analysis, chiral pharmacodynamics, and chiral pharmacokinetics studies.  相似文献   

15.
-, β- and γ-cyclodextrins (CDs), as well as some of their chemical derivatives, have been tested as chiral resolving agents for the capillary zone electrophoretic resolution of the racemic herbicide dichlorprop, (±)-2-(2,4-dichlorophenoxy)propionic acid, of which only the (+)-isomer is herbicidally active. The complexation constants of the herbicide enantiomers with the cyclodextrin host molecules have been calculated from the electrophoretic migration time data at variable cyclodextrin concentration. The experimental results showed that several of the investigated CDs allowed dichlorprop enantiomer resolution. In particular, a newly synthesised ethylcarbonate derivative of β-CD showed the best enantiomer resolution properties among the tested compounds, while the remaining ones showed inferior or no performances at all. The calculated inclusion constants allowed identification of the best conditions for enantioresolution, and an explanation of the different complexation properties of the investigated compounds has been proposed on the basis of molecular modeling.  相似文献   

16.
The separation of drug enantiomers using proteins as the chiral selectors in capillary electrophoresis (CE) is considered in this review. The proteins used include albumins such as bovine serum albumin, human serum albumin and serum albumins from other species, glycoproteins such as alpha1-acid glycoprotein, crude ovomucoid, ovoglycoprotein, avidin and riboflavin binding protein, enzymes such as fungal cellulase, cellobiohydrolase I, pepsin and lysozyme and other proteins such as casein, human serum transferrin and ovotransferrin. Protein-based CE is carried out in two modes: in one proteins are immobilized or adsorbed within the capillary, or protein-immobilized silica gels are packed into the capillary (affinity capillary electrochromatography mode), and in the other proteins are dissolved in the running buffer (affinity CE mode). Furthermore, the advantages and limitations of the two modes and the factors affecting the chiral separations of various drugs by protein-based CE are discussed.  相似文献   

17.
Summary The chiral separation of two newly synthesized arylpropionic acids of pharmaceutical interest, namely 2-[(5′-benzoil-2′-hydroxy)phenyl]-propionic acid (DF-1738y) and 2-[(4′-benzoiloxy-2′-hydroxy)phenyl]-propionic acid (DF-1770y), was performed by Capillary Zone Electrophoresis (CZE) using either cyclodextrins or antibiotics as chiral selectors in coated capillary. In order to optimize the separation, the effect on the migration time and resolution of type and concentration of the chiral selector, the buffer pH and the capillary temperature were studied. Several cyclodextrins, namely the charged 6A-monomethylamino-β-cyclodextrin (MeNH-β-CD) and the neutral methyl-β-cyclodextrins (M-β-CD) and heptakis-2,3,6-tri-O-methyl-β-cyclodextrin (TM-β-CD), were tested for the enantiomeric separation of aryl propionic acids (APAs) compounds. Of these TM-β-CD provided the highest enantiomeric resolution at pH 5, however only DF-1738y optical isomers were baseline resolved. Using background electrolytes (BGEs) at higher pHs (pH=6–7) supported with the above listed CDs, an enantioresolution increase was recognized only for compound DF-1738y. In contrast DF-1770y exhibited the highest resolution at the lowest pH value studied (pH 4). The macrocyclic antibiotic vancomycin was therefore added to the BGE and tested as chiral selector using the partial filling counter current mode in order to obtain a sensitive analysis, high resolution and reduced antibiotic adsorption on the capillary wall. 5 mM vancomycin dissolved in the BGE at pH 5 and 25°C provided relatively high enantiomeric resolution (R DF-1738y=3.4,R DF-1770y=2.22) of both compounds.  相似文献   

18.
19.
CE methods have been developed for the chiral analysis of new types of six acyclic nucleoside phosphonates, nucleotide analogs bearing [(3‐hydroxypropan‐2‐yl)‐1H‐1,2,3‐triazol‐4‐yl]phosphonic acid, 2‐[(diisopropoxyphosphonyl)methoxy]propanoic acid, or 2?(phosphonomethoxy)propanoic acid moieties attached to adenine, guanine, 2,6‐diaminopurine, uracil, and 5‐bromouracil nucleobases, using neutral and cationic cyclodextrins as chiral selectors. With the exception of the 5‐bromouracil‐derived acyclic nucleoside phosphonate with a 2‐(phosphonomethoxy)propanoic acid side chain, the R and S enantiomers of the other five acyclic nucleoside phosphonates were successfully separated with sufficient resolutions, 1.51–2.94, within a reasonable time, 13–28 min, by CE in alkaline BGEs (50 mM sodium tetraborate adjusted with NaOH to pH 9.60, 9.85, and 10.30, respectively) containing 20 mg/mL β‐cyclodextrin as the chiral selector. A baseline separation of the R and S enantiomers of the 5‐bromouracil‐derived acyclic nucleoside phosphonate with 2‐(phosphonomethoxy)propanoic acid side chain was achieved within a short time of 7 min by CE in an acidic BGE (20:40 mM Tris/phosphate, pH 2.20) using 60 mg/mL quaternary ammonium β‐cyclodextrin chiral selector. The developed methods were applied for the assessment of the enantiomeric purity of the above acyclic nucleoside phosphonates. The preparations of all these compounds were found to be synthesized in pure enantiomeric forms. Using UV absorption detection at 206 nm, their concentration detection limits were in the low micromolar range.  相似文献   

20.
Matsunaga H  Haginaka J 《Electrophoresis》2001,22(15):3251-3256
Separations of basic drug enantiomers by capillary electrophoresis (CE) using ovoglycoprotein (OGCHI) as a chiral selector are described. The effects of running buffer pH and 2-propanol content on the migration times and resolution of basic drug enantiomers were examined using a linear polyacrylamide-coated capillary. High resolution of basic drug enantiomers was attained using a mixture of 50 mM sodium phosphate buffer (pH 4.5-6.0) and 2-propanol (5-30%) including 50 microM OGCHI. It was found that ionic and hydrophobic interactions could work for the recognition of basic drug enantiomers. Further, we compared the chiral resolution ability of OGCHI with that of completely deglycosylated OGCHI (cd-OGCHI) using them as chiral selectors in CE. OGCHI showed higher resolution for basic drug enantiomers tested than cd-OGCHI. The results suggest that the chiral recognition site(s) for OGCHI exists on the protein domain of OGCHI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号