首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoinduced electron transfer in two molecular triads comprised of a triarylamine donor, a d(6) metal diimine photosensitizer, and a 9,10-anthraquinone acceptor was investigated with particular focus on the influence of hydrogen-bonding solvents on the electron transfer kinetics. Photoexcitation of the ruthenium(II) and osmium(II) sensitizers of these triads leads to charge-separated states containing an oxidized triarylamine unit and a reduced anthraquinone moiety. The kinetics for formation of these charge-separated states were explored by using femtosecond transient absorption spectroscopy. Strong hydrogen bond donors such as hexafluoroisopropanol or trifluoroethanol cause a thermodynamic and kinetic stabilization of these charge-separated states that is attributed to hydrogen bonding between alcoholic solvent and reduced anthraquinone. In the ruthenium triad this effect leads to a lengthening of the lifetime of the charge-separated state from ~750 ns in dichloromethane to ~3000 ns in hexafluoroisopropanol while in the osmium triad the respective lifetime increases from ~50 to ~2000 ns between the same two solvents. In both triads the lifetime of the charge-separated state correlates with the hydrogen bond donor strength of the solvent but not with the solvent dielectric constant. These findings are relevant in the greater context of solar energy conversion in which one is interested in storing light energy in charge-separated states that are as long-lived as possible. Furthermore they are relevant for understanding proton-coupled electron transfer (PCET) reactivity of electronically excited states at a fundamental level because changes in hydrogen-bonding strength accompanying changes in redox states may be regarded as an attenuated form of PCET.  相似文献   

2.
The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.  相似文献   

3.
Recent advances in the theoretical treatment of proton-coupled electron transfer (PCET) reactions are reviewed. These reactions play an important role in a wide range of biological processes, as well as in fuel cells, solar cells, chemical sensors, and electrochemical devices. A unified theoretical framework has been developed to describe both sequential and concerted PCET, as well as hydrogen atom transfer (HAT). A quantitative diagnostic has been proposed to differentiate between HAT and PCET in terms of the degree of electronic nonadiabaticity, where HAT corresponds to electronically adiabatic proton transfer and PCET corresponds to electronically nonadiabatic proton transfer. In both cases, the overall reaction is typically vibronically nonadiabatic. A series of rate constant expressions have been derived in various limits by describing the PCET reactions in terms of nonadiabatic transitions between electron-proton vibronic states. These expressions account for the solvent response to both electron and proton transfer and the effects of the proton donor-acceptor vibrational motion. The solvent and protein environment can be represented by a dielectric continuum or described with explicit molecular dynamics. These theoretical treatments have been applied to numerous PCET reactions in solution and proteins. Expressions for heterogeneous rate constants and current densities for electrochemical PCET have also been derived and applied to model systems.  相似文献   

4.
The BLUF (blue light sensor using flavin adenine dinucleotide) domain is widely studied as a prototype for proton coupled electron transfer (PCET) reactions in biological systems. In this work, the photo-induced concerted PCET reaction from the light state of the AppA BLUF domain is investigated. To model the simultaneous transfer of two protons in the reaction, two-dimensional potential energy surfaces for the double proton transfer are first calculated for the locally excited and charge transfer states, which are then used to obtain the vibrational wave function overlaps and the vibrational energy levels. Contributions to the PCET rate constant from each pair of vibronic states are then analyzed using the theory based on the Fermi's golden rule. We show that, the recently proposed light state structure of the BLUF domain with a tautomerized Gln63 residue is consistent with the concerted transfer of one electron and two protons. It is also found that, thermal fluctuations of the protein structure, especially the proton donor-acceptor distances, play an important role in determining the PCET reaction rate. © 2018 Wiley Periodicals, Inc.  相似文献   

5.
Electrons and protons are the main actors in play in proton coupled electron transfer (PCET) reactions, which are fundamental in many biological (i.e., photosynthesis and enzymatic reactions) and electrochemical processes. The mechanism, energetics and kinetics of PCET reactions are strongly controlled by the coupling between the transferred electrons and protons. Concerted PCET reactions are classified according to the electronical adiabaticity degree of the process. To discriminate among different mechanisms, we propose a new analysis based on the use of electron density based indexes. We choose, as test case, the 3-Methylphenoxyl/phenol system in two different conformations to show how the proposed analysis is a suitable tool to discriminate between the different degree of adiabaticity of PCET processes. The very low computational cost of this procedure is extremely promising to analyze and provide evidences of PCET mechanisms ruling the reactivity of many biological and catalytic systems.  相似文献   

6.
Proton-coupled electron transfer (PCET) is of key importance in modern synthetic chemistry. Redox-active guanidines were established by our group as valuable alternatives to toxic high-potential benzoquinones in a variety of different PCET reactions. In this work, the PCET reactivity of a series of 1,4-bisguanidino-benzenes varying in their redox potentials and proton affinities is evaluated. The relevant redox and protonation states are fully characterized, and the compounds sorted with respect to their PCET reactivity by comparative PCET experiments supplemented by quantum-chemical calculations. Depending on the studied reactions, the driving force is either electron transfer or proton transfer; thereby the influence of both processes on the overall reactivity could be assessed. Then, two of the PCET reagents are applied in representative oxidative aryl-aryl coupling reactions, namely the intramolecular coupling of 3,3’’-4,4’’-tetramethoxy-o-terphenyl to give the corresponding triphenylene, the intermolecular coupling of N-ethylcarbazole to give N,N’-diethyl-3,3’-bicarbazole, and in the oxidative lactonization of 2-[(4-methoxyphenyl)methyl]-benzoic acid. Under mild conditions, the reactions proceed fast and efficient. Only small amounts of acid are needed, in clear contrast to the corresponding coupling reactions with traditional high-potential benzoquinones such as DDQ or chloranil requiring a large excess of a strong acid.  相似文献   

7.
The use of light to drive proton-coupled electron transfer (PCET) reactions has received growing interest, with recent focus on the direct use of excited states in PCET reactions (ES-PCET). Electrostatic ion pairs provide a scaffold to reduce reaction orders and have facilitated many discoveries in electron-transfer chemistry. Their use, however, has not translated to PCET. Herein, we show that ion pairs, formed solely through electrostatic interactions, provide a general, facile means to study an ES-PCET mechanism. These ion pairs formed readily between salicylate anions and tetracationic ruthenium complexes in acetonitrile solution. Upon light excitation, quenching of the ruthenium excited state occurred through ES-PCET oxidation of salicylate within the ion pair. Transient absorption spectroscopy identified the reduced ruthenium complex and oxidized salicylate radical as the primary photoproducts of this reaction. The reduced reaction order due to ion pairing allowed the first-order PCET rate constants to be directly measured through nanosecond photoluminescence spectroscopy. These PCET rate constants saturated at larger driving forces consistent with approaching the Marcus barrierless region. Surprisingly, a proton-transfer tautomer of salicylate, with the proton localized on the carboxylate functional group, was present in acetonitrile. A pre-equilibrium model based on this tautomerization provided non-adiabatic electron-transfer rate constants that were well described by Marcus theory. Electrostatic ion pairs were critical to our ability to investigate this PCET mechanism without the need to covalently link the donor and acceptor or introduce specific hydrogen bonding sites that could compete in alternate PCET pathways.

Electrostatic ion pairs provide a general method to study excited-state proton-coupled electron transfer. A PTaETb mechanism is identified for the ES-PCET oxidation of salicylate within photoexcited cationic ruthenium–salicylate ion pairs.  相似文献   

8.
In many of the chemical steps in photosynthesis and artificial photosynthesis, proton coupled electron transfer (PCET) plays an essential role. An important issue is how excited state reactivity can be integrated with PCET to carry out solar fuel reactions such as water splitting into hydrogen and oxygen or water reduction of CO2 to methanol or hydrocarbons. The principles behind PCET and concerted electron–proton transfer (EPT) pathways are reasonably well understood. In Photosystem II antenna light absorption is followed by sensitization of chlorophyll P680 and electron transfer quenching to give P680+. The oxidized chlorophyll activates the oxygen evolving complex (OEC), a CaMn4 cluster, through an intervening tyrosine–histidine pair, YZ. EPT plays a major role in a series of four activation steps that ultimately result in loss of 4e?/4H+ from the OEC with oxygen evolution. The key elements in photosynthesis and artificial photosynthesis – light absorption, excited state energy and electron transfer, electron transfer activation of multiple-electron, multiple-proton catalysis – can also be assembled in dye sensitized photoelectrochemical synthesis cells (DS-PEC). In this approach, molecular or nanoscale assemblies are incorporated at separate electrodes for coupled, light driven oxidation and reduction. Separate excited state electron transfer followed by proton transfer can be combined in single semi-concerted steps (photo-EPT) by photolysis of organic charge transfer excited states with H-bonded bases or in metal-to-ligand charge transfer (MLCT) excited states in pre-associated assemblies with H-bonded electron transfer donors or acceptors. In these assemblies, photochemically induced electron and proton transfer occur in a single, semi-concerted event to give high-energy, redox active intermediates.  相似文献   

9.
Theoretical studies of proton-coupled electron transfer (PCET) reactions for model systems provide insight into fundamental concepts relevant to bioenergetics. A dynamical theoretical formulation for vibronically nonadiabatic PCET reactions has been developed. This theory enables the calculation of rates and kinetic isotope effects, as well as the pH and temperature dependences, of PCET reactions. Methods for calculating the vibronic couplings for PCET systems have also been developed and implemented. These theoretical approaches have been applied to a wide range of PCET reactions, including tyrosyl radical generation in a tyrosine-bound rhenium polypyridyl complex, phenoxyl/phenol and benzyl/toluene self-exchange reactions, and hydrogen abstraction catalyzed by the enzyme lipoxygenase. These applications have elucidated some of the key underlying physical principles of PCET reactions. The tools and concepts derived from these theoretical studies provide the foundation for future theoretical studies of PCET in more complex bioenergetic systems such as Photosystem II.  相似文献   

10.
Aromatic amino acids such as l -tyrosine and l -tryptophan are deployed in natural systems to mediate electron transfer (ET) reactions. While tyrosine oxidation is always coupled to deprotonation (proton-coupled electron-transfer, PCET), both ET-only and PCET pathways can occur in the case of the tryptophan residue. In the present work, two novel conjugates 1 and 2 , based on a SnIV tetraphenylporphyrin and SnIV octaethylporphyrin, respectively, as the chromophore/electron acceptor and l -tryptophan as electron/proton donor, have been prepared and thoroughly characterized by a combination of different techniques including single crystal X-ray analysis. The photophysical investigation of 1 and 2 in CH2Cl2 in the presence of pyrrolidine as a base shows that different quenching mechanisms are operating upon visible-light excitation of the porphyrin component, namely photoinduced electron transfer and concerted proton electron transfer (CPET), depending on the chromophore identity and spin multiplicity of the excited state. The results are compared with those previously described for metal-mediated analogues featuring SnIV porphyrin chromophores and l -tyrosine as the redox active amino acid and well illustrate the peculiar role of l -tryptophan with respect to PCET.  相似文献   

11.
The relation between the hydrogen atom transfer (HAT) and proton-coupled electron transfer (PCET) mechanisms is discussed and is illustrated by multiconfigurational electronic structure calculations on the ArOH + R(*) --> ArO(*) + RH reactions. The key topographic features of the Born-Oppenheimer potential energy surfaces that determine the predominant reaction mechanism are the conical intersection seam of the two lowest states and reaction saddle points located on the shoulders of this seam. The saddle point corresponds to a crossing of two interacting valence bond states corresponding to the reactant and product bonding patterns, and the conical intersection corresponds to the noninteracting intersection of the same two diabatic states. The locations of mechanistically relevant conical intersection structures and relevant saddle point structures are presented for the reactions between phenol and the N- and O-centered radicals, (*)NH2 and (*)OOCH3. Points on the conical intersection of the ground doublet D0 and first excited doublet D1 states are found to be in close geometric and energetic proximity to the reaction saddle points. In such systems, either the HAT mechanism or both the HAT mechanism and the proton-coupled electron transfer (PCET) mechanism can take place, depending on the relative energetic accessibility of the reaction saddle points and the D0/D1 conical intersection seams. The discussion shows how the two mechanisms are related and how they blend into each other along intermediate reaction paths. The recognition that the saddle point governing the HAT mechanism is on the shoulder of the conical intersection governing the PCET mechanism is used to provide a unified view of the competition between the two mechanisms (and the blending of the two mechanisms) in terms of the prominent and connected features of the potential energy surface, namely the saddle point and the conical intersection. The character of the dual mechanism may be understood in terms of the dominant valence bond configurations of the intersecting states, which are zero-order approximations to the diabatic states.  相似文献   

12.
Excitation of a molecule from the ground state to an electronically excited state can cause changes in its geometry, dipole moment, acidity or basicity, redox potentials and solvation. Bimolecular quenching of the excited state of the probe by other molecules present in the medium can be used to determine the mobilities of molecules and estimate microviscosities and encounter probabilities in the medium. Differences in excited state acidity or basicity relative to the ground state can be employed to investigate the dynamics of ultrafast proton transfer reactions. Three areas of current interest where fluorescent probes have served to elucidate important dynamic processes of molecules in simple self-aggregating surfactant systems such as aqueous micelles and reverse micelles are considered: (a) bimolecular quenching of excited states; (b) the dynamics of solvation of excited states and (c) ultrafast intermolecular excited state proton transfer (ESPT) reactions.  相似文献   

13.
Proton-coupled electron transfer (PCET) is an elementary chemical reaction crucial for biological oxidoreduction. We perform quantum chemical calculations to study the direct and water-mediated PCET between two stacked tyrosines, TyrO(?) + TyrOH → TyrOH + TyrO(?), to mimic a key step in the catalytic reaction of class Ia ribonucleotide reductase (RNR). The energy surfaces of electronic ground and excited states are separated by a large gap of ~20 kcal mol(-1), indicative of an electronically adiabatic transfer mechanism. In response to chemical substitutions of the proton donor, the energy of the transition state for direct PCET shifts by exactly half of the change in energetic driving force, resulting in a linear free energy relation with a Br?nsted slope of ?. In contrast, for water-mediated PCET, we observe integer Br?nsted slopes of 1 and 0 for proton acceptor and donor modifications, respectively. Our calculations suggest that the π-stacking of the tyrosine dimer in RNR results in strong electronic coupling and adiabatic PCET. Water participation in the PCET can be identified perturbatively in a Br?nsted analysis.  相似文献   

14.
Proton-coupled electron transfer (PCET) reactions are of great importance in synthetic chemistry and in biology, but the acquisition of kinetic information for these reactions is often difficult. Herein, we report the synthesis of a new PCET reagent, showing redox-state dependent fluorescence, by merging the concept of cross-conjugated cruciform chromophores with the strategy of imposing redox activity and Brønsted basicity to aromatic compounds by substitution with guanidino groups. The compound is isolated and characterized in all stable states—reduced, twofold and fourfold protonated and twofold oxidized—and then applied in PCET reactions by using its redox-state dependent fluorescence signal for kinetic measurements.  相似文献   

15.
16.
Proton‐coupled electron transfer (PCET) reactions are essential for a wide range of natural energy‐conversion reactions and recently, the impact of PCET pathways has been exploited in artificial systems, too. The Minireview highlights PCET reactions catalysed by first‐row transition‐metal complexes, with a focus on the water oxidation, the oxygen reduction, the hydrogen evolution, and the CO2 reduction reaction. Special attention will be paid to systems in which the impact of such pathways is deduced by comparison to systems with “electron‐only”‐transfer pathways.  相似文献   

17.
Proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) reactions of the phenoxyl/phenol couple are studied theoretically by using wave function theory (WFT) as well as DFT methods. At the complete active space self-consistent field (CASSCF) level, geometry optimization is found to give two transition states (TSs); one is the PCET type with two benzene rings being nearly coplanar, and the other is the HAT type with two benzene rings taking a stacking structure. Geometry optimization at the (semilocal) DFT level, on the other hand, is found to give only one transition state (i.e., the PCET-type one) and fail to obtain the stacking TS structure. By comparing various levels of theories (including long-range corrected DFT functionals), we demonstrate that the Hartree-Fock exchange at long range plays a critical role in obtaining the sufficient stacking stabilization of the present open-shell system, and that the sole addition of empirical dispersion correction to semilocal DFT functionals may not be adequate for describing such a stacking interaction. Next, we investigate the solvent effect on the PCET and HAT TS thus obtained using the reference interaction site model self-consistent field (RISM-SCF) method. The results suggest that the free energy barrier increases with increasing polarity of the solvent, and that the solvent effects are stronger for the PCET TS than the stacking HAT TS pathway. The reason for this is discussed based on the dipole moment of different TS structures in solution.  相似文献   

18.
The reactivity, and even reaction pathway, of excited states can be tuned by proton‐coupled electron transfer (PCET). The triplet state of benzophenone functionalized with a Brønsted acid (3*BP‐COOH) showed a more powerful oxidation capability over the simple triplet state of benzophenone (3*BP). 3*BP‐COOH could remove an electron from benzene at the rate of 8.0×105 m ?1 s?1, in contrast to the reactivity of 3*BP which was inactive towards benzene oxidation. The origin of this great enhancement on the ability of the excited states to remove electrons from substrates is attributed to the intramolecular Brønsted acid, which enables the reductive quenching of 3*BP by concerted electron–proton transfer.  相似文献   

19.
Recent experiments on the title subject, performed with a high‐resolution crossed‐beam apparatus, have provided the total ionization cross sections as a function of the collision energy between noble gas atoms, electronically excited in their metastable states (Ng*), and H2O, H2S, and NH3 reagents, as well as the emitted electron energy spectra. This paper presents a rationalization of all the experimental findings in a unifying picture to cast light on the basic chemical properties of Ng* under conditions of great relevance both from a fundamental and from an applied point of view. The importance of this investigation is that it isolates the selective role of the intermolecular halogen and hydrogen bonds, to assess their anisotropic effects on the stereodynamics of the promoted ionization reactions, and to model energy transfer and reactivity in systems of applied interest, such as planetary atmospheres, plasmas, lasers, and flames.  相似文献   

20.
"Give us insight, not numbers" was Coulson's admonition to theoretical chemists. This Review shows that the valence bond (VB)-model provides insights and some good numbers for one of the fundamental reactions in nature, the hydrogen-atom transfer (HAT). The VB model is applied to over 50 reactions from the simplest H + H(2) process, to P450 hydroxylations and H-transfers among closed-shell molecules; for each system the barriers are estimated from raw data. The model creates a bridge to the Marcus equation and shows that H-atom abstraction by a closed-shell molecule requires a higher barrier owing to the additional promotion energy needed to prepare the abstractor for H-abstraction. Under certain conditions, a closed-shell abstractor can bypass this penalty through a proton-coupled electron transfer (PCET) mechanism. The VB model links the HAT and PCET mechanisms conceptually and shows the consequences that this linking has for H-abstraction reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号