首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Toxicities of CdSe and CdSe/CdS quantum dots(QDs) synthesized by ultrasound-assisted methods were investigated in vitro and in vivo.Five human cell lines were used to assess the cytotoxicity of as-prepared CdSe and CdSe/CdS by assays of MTT viability,red blood cell hemolysis,flow cytometry,and fluorescence imaging.The results show that these QDs may be cytotoxic by their influence in S and G2 phases in cell cycles.The cytotoxicity of QDs depends on both the physicochemical properties and related to target cells.  相似文献   

2.
Cadmium selenide quantum dots (QDs) have been dispersed in a discotic liquid crystal columnar matrix. Thermophysical properties of these liquid crystal nanocomposites were investigated by UV-Vis spectroscopy, photoluminescence spectroscopy, differential scanning calorimetry, polarizing optical microscopy, DC conductivity and small angle X-ray diffraction.  相似文献   

3.
This paper describes the synthesis of core-shell CdSe/CdS quantum dots (QDs) in aqueous solution by a simple photoassisted method. CdSe was prepared from cadmium nitrate and 1,1-dimethylselenourea precursors under illumination for up to 3 h using a pulsed Nd:YAG laser at 532 nm. The effects that the temperature and the laser irradiation process have on the synthesis of CdSe were monitored by a series of experiments using the precursors at a Cd:Se concentration ratio of 4. Upon increasing the temperature (80-140 degrees C), the size of the CdSe QDs increases and the time required for reaching a maximum photoluminescence (PL) is shortened. Although the as-prepared CdSe QDs possess greater quantum yields (up to 0.072%) compared to those obtained by microwave heating (0.016%), they still fluoresce only weakly. After passivation of CdSe (prepared at 80 degrees C) by CdS using thioacetamide as the S source (Se:S concentration ratio of 1) at 80 degrees C for 24 h, the quantum yield of the core-shell CdSe/CdS QDs at 603 nm is 2.4%. Under UV irradiation of CdSe/CdS for 24 h using a 100-W Hg-Xe lamp, the maximum quantum yield of the stable QDs is 60% at 589 nm. A small bandwidth (W1/2 < 35 nm) indicates the narrow size distribution of the as-prepared core-shell CdSe/CdS QDs. This simple photoassisted method also allows the preparation of differently sized (3.7-6.3-nm diameters) core-shell CdSe/CdS QDs that emit in a wide range (from green to red) when excited at 480 nm.  相似文献   

4.
Semiconductor nanocrystal quantum dots (QDs), owing to their unique opto-electronic properties determined by quantum confinement effects, have been the subject of extensive investigations in different areas of science and technology in the past two decades. The electrochemical behaviour of QDs, particularly for CdSe and CdTe nanocrystals, has also been explored, although to a lesser extent compared to the optical properties. Voltammetric measurements can be used to probe the redox levels available for the nanocrystals, which is an invaluable piece of information if these systems are involved in electron transfer processes. Electrochemical data can also foster the interpretation of the spectroscopic properties of QDs, and give insightful information on their chemical composition, dimension, and surface properties. Hence, electrochemical methods constitute in principle an effective tool to probe the quality of QD samples in terms of purity, size dispersion, and surface defects. The scope of this critical review is to discuss the results of electrochemical studies carried out on CdSe and CdTe core and core-shell semiconductor nanocrystals of spherical shape. Examples of emerging or potential applications that exploit electroactive quantum dot-based systems will also be illustrated.  相似文献   

5.
Mn ion doping of CdSe and other semimagnetic quantum dot (QDs) alloys has been an area of active speculation for over a decade. We report evidence of Mn(II) doping of CdSe grown from a cubic single source precursor that is superparamagnetic (SPM) with a blocking temperature of 40 K following thermal annealing. Prior to thermal annealing the 4 nm Mn/CdSe (1% Mn) QDs exhibit mainly paramagnetic behavior between 300 and 2 K, with a weak antiferromagnetic exchange. Following thermal annealing of the sample, high-temperature ferromagnetic exchange is observed in the magnetization data with the onset of an SPM phase at 40 K that exhibits a coercivity of 0.1 T at 2 K. The switching-on of SPM behavior is believed to be linked to ion migration with formation of (Se-Mn-Se-Mn-Se-Mn)n centers within the nanocrystal that exhibit coupled magnetic moments. Electron paramagnetic resonance (EPR) provides evidence of two distorted T(d) Mn core sites, a clustered site (dipolar broadened), and a localized Mn site (hyperfine-split). The ratio of the EPR signature for the dipolar broadened site increases following annealing and shows a hysteretic response around the blocking temperature. These observations suggest that thermal annealing results in enhanced cluster formation explaining the onset of the SPM phase in these nanoscale materials. Evidence of SPM behavior is evident in the field-dependent non-Langevin magnetization with a tangential loss in the ac-magnetic susceptibility and the Mydosh parameter (phi = 0.16).  相似文献   

6.
The CdSe quantum dots (QDs) with bidentate ligands: a-diimine (NN) and dihydrolipoic acid (DHLA) were synthesized and characterized by UV-Vis, particle size and capillary electrophoretic techniques. Two systems were analyzed: CdSe with one ligand (CdSe/ligand) and CdSe with two different ligands (CdSe//ligand1/ligand2), where ligand = α-diimine or DHLA. Hydrodynamic features of functionalized QDs were characterized by zone capillary electrophoretic (CZE), and particle size techniques and these methods were consistent. It was established that CZE, micellar (MEKC) and microemulsion (MEEKC) modes were suitable for separating charged CdSe QDs and that no peaks were obtained for QDs passivated with electrically neutral ligands. For CdSe QDs with neutral (NN) ligands, a preconcentration method with the use of a micellar plug was introduced for visualizing these QDs. A sharp peak representing neutral QDs was obtained within the zone of micellar plug of a non-ionic surfactant, Here, a ligand character used for CdSe modification and the type of the electrophoretic method applied were the determining factors for the QDs peak visualization. Moreover, examples of visualization of charged and neutral QDs on the same run were presented, and for this purpose, dual mechanism (separation/preconcentration) was proposed.   相似文献   

7.
以柠檬酸三钠为稳定剂在水溶液中合成了水溶性CdSe量子点,用X射线粉末衍射、透射电镜、紫外-可见吸收光谱和荧光发射光谱对CdSe量子点的结构、形貌及其荧光性质进行了表征.结果表明合成的CdSe量子点为立方闪锌矿结构,呈球形,分散性良好,平均尺寸约为2.6nm,具有窄且对称的荧光发射光谱,半峰宽为45nm.  相似文献   

8.
Semiconductor nanocrystal quantum dots (NQDs) comprise an important class of inorganic fluorophores for applications from optoelectronics to biology. Unfortunately, to date, NQD optical properties (e.g., their efficient and particle-size-tunable photoluminescence) have been susceptible to instabilities at the bulk and single-particle levels. Specifically, ensemble quantum yields (QYs) in emission are dependent upon NQD surface chemistry and chemical environment, while at the single-particle level, NQDs are characterized by significant fluorescence intermittency (blinking) that hinders applications as single-photon light sources for quantum informatics and biolabels for real-time monitoring of single biomolecules. Furthermore, while NQDs are significantly more photostable than their organic dye counterparts, traditional NQDs photobleach over periods of seconds to many minutes. Here, we demonstrate for the first time that by encapsulating the NQD core in a sufficiently thick inorganic shell, we are able to divorce NQD function from NQD surface chemistry and chemical environment. We show that our "giant" NQDs (g-NQDs) are functionally distinct from standard core-only, core/shell and even core/multishell NQDs. g-NQDs are substantially less sensitive to changes in surface chemistry. They do not photobleach under continuous laser excitation over periods of several hours repeated over several days, and they exhibit markedly different blinking behavior; >20% of the g-NQDs do not blink, while >40% have on-time fractions of >80%. All of these observations are in stark contrast with control samples comprising core-only and standard, thinner core/multishell NQDs.  相似文献   

9.
We have developed a capillary electrophoresis method to characterize the QD surface ligand interactions with various surfactant systems. The method was demonstrated with 2–5 nm CdSe nanoparticles surface-passivated with trioctylphosphine oxide (TOPO). Water solubility was accomplished by surfactant-assisted phase transfer via an oil-in-water microemulsion using either cationic, anionic, or non-ionic surfactants. Interaction between the QD surface ligand (TOPO) and the alkyl chain of the surfactant molecule produces a complex and dynamic surface coating that can be characterized through manipulation of CE separation buffer composition and capillary surface modification. Additional characterization of the QD surface ligand interactions with surfactants was accomplished by UV-VIS spectroscopy, photoluminescence, and TEM. It is anticipated that studies such as these will elucidate the dynamics of QD surface ligand modifications for use in sensors.   相似文献   

10.
Photoluminescence (PL) intermittency characteristics are examined for single quantum dots (QDs) in a CdSe QD sample synthesized at a slow rate at 75 degrees C. Although the PL quantum efficiency was relatively low ( approximately 0.25), we noticed that the PL intensity of single CdSe QDs fluctuated on a subsecond time scale with short-lived "on" and "off" states. The subsecond PL intensity fluctuations of CdSe QDs are different from "on" and "off" PL blinking generally observed for QDs fluctuating on a millisecond to minute time scale. We characterized single QDs by identifying polarized excitations, topographic imaging using atomic force microscopy (AFM), and transmission electron microscopy (TEM). From analysis of the PL intensity trajectories from >100 single CdSe QDs, the average intermittency time was 213 ms. From the PL quantum efficiency, slow growth of QDs, intensity trajectory analyses, and previous reports relating surface trap states and PL properties of QDs, we attribute the subsecond PL intensity fluctuations of single CdSe QDs and short-lived "on" and "off" states to a high-density distribution of homogeneous surface trap states.  相似文献   

11.
CdSe quantum dots are the most studied Cd-based quantum dots with their high quantum yield, high photostability, narrow emission band, and easy synthesis procedure. They are frequently used to develop light emitting diode (LED) due to their unique photophysical properties; however, their narrow emission band causes a challenge to design white LEDs because white light emission requires emission in multiple wavelengths with broad emission bands. Here in this study, we developed CdSe quantum dots with a narrow band-edge emission band and broad defect-state emission band through a modified two-phase synthesis method. Our results revealed that defect-state emission is directly linked to the surface of quantum dots and can be excited through exciting surfactant around the quantum dot. The effect of surfactant on emission properties of CdSe quantum dots diminished upon growing a shell around CdSe quantum dots; as a result, surface-dependent defect-state emission cannot be observed in gradient heterogeneous alloyed CdSxSe1-x quantum dots.  相似文献   

12.
13.
Functionalized CdSe quantum dots as selective silver ion chemodosimeter   总被引:7,自引:0,他引:7  
Liang JG  Ai XP  He ZK  Pang DW 《The Analyst》2004,129(7):619-622
CdSe quantum dots (QDs) have been prepared and modified with mercaptoacetic acid. They are water-soluble and biocompatible. To improve their fluorescence intensity and stability in water solution, bovine serum albumin (BSA) was absorbed onto their surface. Based on the quench of fluorescence signals of the functionalized CdSe QDs in the 543 nm wavelength and enhancement of them in the 570-700 nm wavelength range by Ag(I) ions at pH 5.0, a simple, rapid and specific method for Ag(I) determination was proposed. In comparison with single organic fluorophores, these nanoparticles are brighter, more stable against photobleaching, and do not suffer from blinking. Under the optimum conditions, the response is linearly proportional to the concentration of Ag(I) between 4.0 x 10(-7) and 1.5 x 10(-5) mol L(-1), and the limit of detection is 7.0 x 10(-8) mol L(-1). The mechanism of reaction is also discussed.  相似文献   

14.
15.
The interaction of some diamines (ethylenediamine (EDA), 1,6-hexanediamine (HDA), o-phenylenediamine (OPD)) with CdSe quantum dots (QDs) is reported. With increasing concentration of EDA from 0 to 2.0 x 10(-6) mol l(-1), slight fluorescence enhancement is observed. However, the CdSe QDs fluorescence quenching is seen at relatively higher concentration of EDA. There is a red-shift of 0-7 nm in fluorescence emission spectra of CdSe QDs when the concentration of EDA is changed from 2.0 x 10(-6) to 8.0 x 10(-6) mol l(-1). The resonance light scattering (RLS) spectra of CdSe QDs have little change when the concentration of EDA is less than 5.0 x 10(-6) mol l(-1). It indicates there are little large particles formed in the solution. However, a significant increase of the RLS is observed in the 300-500 nm wavelength range after adding higher concentration than 5.0 x 10(-6) mol l(-1) EDA, which could be attributed to the large particles formed. The interaction between HDA and CdSe QDs is similar to that of EDA. However, with the OPD, it is found that the interaction is much different from those of EDA, HDA, and that the quenching, even at low concentration, is effective for CdSe QDs emission. The quenching phenomenon could be explained by a surface bound complexation equilibrium model.  相似文献   

16.
CdSe quantum dots as luminescent probes for spironolactone determination   总被引:1,自引:0,他引:1  
Liang J  Huang S  Zeng D  He Z  Ji X  Ai X  Yang H 《Talanta》2006,69(1):126-130
Based on the quenching of the fluorescence of CdSe quantum dots (QDs) by spironolactone, a simple, rapid and specific method for spironolactone determination was proposed. In the optimum conditions, spironolactone concentration versus quantum dot fluorescence gave a linear response with an excellent 0.997 correlation coefficient, between 2.5 and 700 mg/mL (6.0-1680 μmol/L) and the limit of detection (S/N = 3) was 0.2 μg/mL (0.48 μmol/L). The contents of spironolactone in pharmaceutical tablets were determined by the proposed method and the results agreed with the claimed values. The possible mechanism for the reaction was also discussed.  相似文献   

17.
The electronic conductivity of tri-n-octylphosphineoxide (TOPO)-protected CdSe quantum dots (QDs) was studied at the air-water interface using the Langmuir technique within the context of photochemical and photophysical excitation. It was found that, upon photoirradiation with photon energies higher than that of the absorption threshold, the voltammetric currents increased rather substantially with a pair of voltammetric peaks at positive potentials. However, the photoconductivity profiles exhibited a dynamic transition, which was ascribed to the strong affinity of oxygen onto the CdSe surface and the consequent trapping of the photogenerated electrons. The resulting excess of holes led to photocorrosion of the particle cores. The oxygen adsorption and photoetching processes were found to be reversible upon cessation of the photoexcitation. In contrast, only featureless voltammetric responses were observed when the particle monolayers were deposited onto the electrode surface and the film conductance was measured in a vacuum (the overall profiles were analogous to that of a Coulomb blockade). A comparative study was also carried out with a CdSe dropcast thick film immersed in acetonitrile, where the photoconductivity profiles were reversible and almost linear. The latter was attributed to the separation of photogenerated electrons and holes which were subsequently collected at the electrodes under voltammetric control. In the dropcast system, the oxygen effects were minimal which was ascribed to the acetontrile medium that limited the access to oxygen and thus the particles were chemically intact. These studies suggest that chemical environment plays an important role in the determination of the chemical stability and electronic conductivity of CdSe QD thin films.  相似文献   

18.
Aqueous thiol-capped CdSe QDs with a narrow, symmetric emission were prepared under a low temperature. Based on the fluorescence enhancement of thiol-stabilized CdSe quantum dots (QDs) caused by edaravone, a simple, rapid and specific quantitative method was proposed to the edaravone determination. The concentration dependence of fluorescence intensity followed the binding of edaravone to surface of the thiol-capped CdSe QDs was effectively described by a modified Langmuir-type binding isotherm. Factors affecting the fluorescence detection for edaravone with thiol-stabilized CdSe QDs were studied, such as the effect of pH, reaction time, the concentration of CdSe QDs and so on. Under the optimal conditions, the calibration plot of C/(I − I0) with concentration of edaravone was linear in the range of (1.45–17.42) μg/mL (0.008–0.1 μmol/L) with correlation coefficient of 0.998. The limit of detection (LOD) (3σ/κ) was 0.15 μg/mL (0.0009 μmol/mL). Possible interaction mechanism was discussed.  相似文献   

19.
20.
In this work, zinc oxide (ZnO) nanoparticles (size <10 nm) were formed via precipitation in ethanolic solution. The zinc acetate and lithium hydroxide solutions in ethanol were mixed at 273 K temperatures under vigorous stirring. To study the effect of quantum dot (QD) coverage, we have prepared a colloidal suspension of capped CdSe QDs (size ~5 nm) by chemical route and anchored them to a nanoporous ZnO layer either by direct adsorption or through linker. Here a bifunctional molecule (mercaptopropionic acid, MPA, and thioglycolic acid, TGA) was previously adsorbed on the ZnO surface, which acted as a molecular cable. From TEM/SEM studies, it was observed that direct adsorption of CdSe QDs onto ZnO surface was not efficient. However, the bifunctional linker molecules particularly MPA facilitates binding of CdSe QDs to ZnO; and consequently, interparticle electron transfer is thus facilitated. The use of MPA linker despite of its long carbon chain also aids in the quenching of photoluminescence of CdSe on addition of ZnO in a more systematic manner indicating efficient charge transfer from CdSe into ZnO as compared with the without linker and with linker TGA case, respectively. Due to higher PL quenching and reduction in lifetime values, higher values of Stern–Volmer quenching constants were thus obtained for CdSe–ZnO composites with MPA as compared with TGA linker and without linker case, respectively. Nonlinear Stern–Volmer plots as observed for samples without linker case indicated heterogeneous quenching due to insufficient binding between CdSe QDs and ZnO. By means of spectroscopic (PL, UV–VIS, FTIR) and microscopic (TEM, SEM) techniques, we have demonstrated linker-dependent photosensitization mechanism of ZnO layers with CdSe QDs. Our data thus illustrate that interfacial-electron transfer kinetics in QD–linker–ZnO assemblies are almost independent of the length of alkyl-containing molecular linkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号