首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A system of boundary integral equations of the first kind with piecewise-smooth kernels, to which the boundary-value problems of electroelasticity reduce in the case of steady-state oscillations, is formulated. The proposed approach does not use the idea of fundamental solutions and is based solely on an anlysis of the characteristic polynomial of the electroelasticity operator  相似文献   

2.
In this paper we develop and analyze a bootstrapping algorithm for the extraction of potentials and arbitrary derivatives of the Cauchy data of regular three-dimensional second order elliptic boundary value problems in connection with corresponding boundary integral equations. The method rests on the derivatives of the generalized Green's representation formula, which are expressed in terms of singular boundary integrals as Hadamard's finite parts. Their regularization, together with asymptotic pseudohomogeneous kernel expansions, yields a constructive method for obtaining generalized jump relations. These expansions are obtained via composition of Taylor expansions of the local surface representation, the density functions, differential operators and the fundamental solution of the original problem, together with the use of local polar coordinates in the parameter domain. For boundary integral equations obtained by the direct method, this method allows the recursive numerical extraction of potentials and their derivatives near and up to the boundary surface.

  相似文献   


3.
Nowadays boundary elemen; methods belong to the most popular numerical methods for solving elliptic boundary value problems. They consist in the reduction of the problem to equivalent integral equations (or certain generalizations) on the boundary Γ of the given domain and the approximate solution of these boundary equations. For the numerical treatment the boundary surface is decomposed into a finite number of segments and the unknown functions are approximated by corresponding finite elements and usually determined by collocation and Galerkin procedures. One finds the least difficulties in the theoretical foundation of the convergence of Galerkin methods for certain classes of equations, whereas the convergence of collocation methods, which are mostly used in numerical computations, has yet been proved only for special equations and methods. In the present paper we analyse spline collocation methods on uniform meshes with variable collocation points for one-dimensional pseudodifferential equations on a closed curve with convolutional principal parts, which encompass many classes of boundary integral equations in the plane. We give necessary and sufficient conditions for convergence and prove asymptotic error estimates. In particular we generalize some results on nodal and midpoint collocation obtained in [2], [7] and [8]. The paper is organized as follows. In Section 1 we formulate the problems and the results, Section 2 deals with spline interpolation in periodic Sobolev spaces, and in Section 3 we prove the convergence theorems for the considered collocation methods.  相似文献   

4.
We study simple preconditioners for the conjugate gradient method when used to solve matrix systems arising from some hypersingular and weakly singular integral equations. The preconditioners, which are of the type of hierarchical basis preconditioners, are based on the decomposition of the piecewise-linear (respectively piecewise-constant) functions as the sum of prewavelets (respectively derivatives of prewavelets). We prove that with these preconditioners the preconditioned systems have condition numbers uniformly bounded with respect to the degrees of freedom. Numerical experiments support our analysis. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Summary Multigrid methods are applied for solving algebraic systems of equations that occur to the numerical treatment of boundary integral equations of the first and second kind. These methods, originally formulated for partial differential equations of elliptic type, combine relaxation schemes and coarse grid corrections. The choice of the relaxation scheme is found to be essential to attain a fast convergent iterative process. Theoretical investigations show that the presented relaxation scheme provides a multigrid algorithm of which the rate of convergence increases with the dimension of the finest grid. This is illustrated for the calculation of potential flow around an aerofoil.  相似文献   

6.
Summary. The potential of sparse grid discretizations for solving boundary integral equations is studied for the screen problem on a square in . Theoretical and numerical results on approximation rates, preconditioning, adaptivity and compression for piecewise constant and linear sparse grid spaces are obtained. Received March 17, 1998 / Revised version received September 10, 1998  相似文献   

7.
Multi-parameter extrapolation was first introduced by Zhou et al. for solving partial differential equations with finite element methods in 1994. The method is based on a domain decomposition and independent discretization of the subdomains resulting in a multi-parameter error expansion. This permits a generalized extrapolation technique. The algorithm is naturally parallel since the main computational work is spent in solving independent linear systems. Here the method is extended to the case of boundary integral equations on polygonal domains, where singularities require graded meshes. A complete analysis is given, based on weighted norm techniques. Several numerical experiments demonstrate the mathematical features and practical usefulness of the method. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
9.
Summary. The qualocation methods developed in this paper, with spline trial and test spaces, are suitable for classes of boundary integral equations with convolutional principal part, on smooth closed curves in the plane. Some of the methods are suitable for all strongly elliptic equations; that is, for equations in which the even symbol part of the operator dominates. Other methods are suitable when the odd part dominates. Received December 27, 1996 / Revised version received April 14, 1997  相似文献   

10.
11.
12.
Indirect and direct boundary integral equations equivalent to the original boundary value problem of differential equation of plane elasticity are established rigorously. The unnecessity or deficiency of some customary boundary integral equations is indicated by examples and numerical comparison.  相似文献   

13.
14.
Recently, Galerkin and collocation methods have been analysed for some nonlinear boundary integral equations. For the collocation method it has been assumed that the nonlinearity is asymptotically linear. In this paper we remove this restriction. We shall prove the convergence of the collocation method for nonlinear boundary integral equations, when the nonlinearity has a polynomial growth condition. In addition to this the optimal order error estimates follow in Lq(Γ)-norm.  相似文献   

15.
For the functional differential equationu (n) (t)=f(u)(t) we have established the sufficient conditions for solvability and unique solvability of the boundary value problems $$u^{(i)} (0) = c_i (i = 0,...,m - 1), \smallint _0^{ + \infty } |u^{(m)} (t)|^2 dt< + \infty $$ and $$\begin{gathered} u^{(i)} (0) = c_i (i = 0),...,m - 1, \hfill \\ \smallint _0^{ + \infty } t^{2j} |u^{(j)} (t)|^2 dt< + \infty (j = 0,...,m), \hfill \\ \end{gathered} $$ wheren≥2,m is the integer part of $\tfrac{n}{2}$ ,c i R, andf is the continuous operator acting from the space of (n?1)-times continuously differentiable functions given on an interval [0,+∞] into the space of locally Lebesgue integrable functions.  相似文献   

16.
The existence and uniqueness of solutions of more general Volterra-Fredholm integral equations are investigated. The successive approximations method based on the general idea of T. Wazewski is the main tool.  相似文献   

17.
18.
Summary. We consider spline collocation methods for a class of parabolic pseudodifferential operators. We show optimal order convergence results in a large scale of anisotropic Sobolev spaces. The results cover for example the case of the single layer heat operator equation when the spatial domain is a disc. Received December 15, 1997 / Revised version received November 16, 1998 / Published online September 24, 1999  相似文献   

19.
The existence of distributional solutions is discussed for theinitial-boundary value problems associated with the motion ofa thin, elastic, multiply connected plate, and for the boundaryequations arising from integral representations of such solutions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号