首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
藜蒿中黄酮类化合物的微波辅助萃取研究   总被引:13,自引:0,他引:13  
应用密闭微波萃取装置,分别对藜蒿茎和藜蒿叶中黄酮类化合物进行微波萃取研究。采用正交试验方法得到微波提取藜蒿中黄酮类化合物的最佳条件。微波提取藜蒿茎的最佳条件为乙醇体积分数70%,微波功率800W,提取温度80℃和料液比1:20;微波提取藜蒿叶的最佳条件为乙醇体积分数70%,微波功率600W,照射时间12min,提取温度70℃和料液比1:20;在最佳条件下,藜蒿茎和叶中总黄酮提取率分别为6.43%和7.01%。并将微波萃取与乙醇回流提取进行了比较。  相似文献   

2.
采用STE-MECC法分离测定大黄中的芦荟大黄素,大黄素和大黄酸。萃取条件为压 力41.4MPa,温度50℃,改性剂量0.4mL。被测组分在10min得到全部分离。本法准确、简 便、快速、结果令人满意。  相似文献   

3.
微波辅助萃取应用研究进展   总被引:5,自引:0,他引:5  
近年来关于微波辅助萃取(MAE)与其他各种样品前处理技术的结合使用,以及与多种检测技术在线联用的研究越来越多,此外离子液体等新型绿色溶剂作为萃取剂在MAE中的应用也开始得到广泛关注.本文综述了近几年微波辅助萃取在环境、天然产物提取、食品和药物分析领域的应用情况,并对其将来的发展进行了展望.  相似文献   

4.
密闭微波辅助萃取天麻中天麻素的研究   总被引:1,自引:0,他引:1  
应用密闭微波萃取装置,对中药天麻中有效成分天麻素的萃取进行了研究。分别讨论了药材颗粒粒径、提取溶剂浓度、微波提取时间和提取剂的用量对微波萃取天麻素的影响。结果表明:当药材粒径<50μm,乙醇体积分数为50%,微波辐射时间为2min,提取剂质量为药材质量的30倍时,天麻素提取率最高。此外,将微波萃取与索氏萃取和超声波萃取进行了比较。  相似文献   

5.
中药大黄中羟基蒽醌类成分的分离   总被引:3,自引:0,他引:3  
依据正交试验设计方法,研究了用乙醇和乙醚等溶剂分离中药大黄中羟基蒽醌类成分(蒽甙及游离羟基蒽醌类成分)及游离羟基蒽醌类成分的最佳分离条件,试验表明,乙醇的用量及回流次数对提取产率有很大影响,而回流时间的影响相对较小,100g大黄干粉的最佳分离条件是:用90mL95%乙醇浸润,再用150-175ml乙醇回流,回流3次,每次30-40min,即可较充分发将羟基蒽醌类成分总量的84%及游离羟基蒽醌类成分总量的82%提取出来。  相似文献   

6.
微波辅助流动萃取槐花中的黄酮类成分   总被引:14,自引:1,他引:14  
槐花为豆科落叶乔木槐树(Sophora japonica L.)的花蕾,槐花能降低血管的通透性,所含芸香甙(芦丁)对心脏传导系统有抑制作用,能增强收缩力及输出量,降低血压;所含槲皮素可以扩张冠状动脉,降低心肌耗氧量,并能降低血脂。  相似文献   

7.
微波辅助萃取满山红叶中总黄酮的研究   总被引:9,自引:0,他引:9  
用带可控温的Star-2型开罐式微波消解仪对满山红叶中的总黄酮进行了微波萃取研究。通过正交试验考察了微波萃取溶剂、微波辐照时间、萃取温度和液固比等条件对满山红中总黄酮萃取率的影响。结果表明,在乙醇浓度为80%、萃取温度为90℃、微波辐照时间为10min、液固比为40:1的条件下,微波萃取满山红叶中总黄酮萃取率最佳。与传统回流法相比,萃取率提高了16%。  相似文献   

8.
微波辅助萃取技术的进展   总被引:44,自引:0,他引:44  
李核  李攻科  张展霞 《分析化学》2003,31(10):1261-1268
介绍了微波辅助萃取技术的特点和装置,综述了近年来微波辅助萃取技术在环境分析和药物提取中的应用,并展望了微波辅助萃取技术的应用前景和发展方向。引用文献74篇。  相似文献   

9.
密闭微波辅助萃取丹参中有效成分的研究   总被引:17,自引:2,他引:17  
应用具有压力控制附件的MSP-100D密闭微波萃取装置,对丹参中的有效成分丹参酮、丹参酮A及隐丹参酮进行微波萃取研究.在乙醇体积分数为90%,微波辐射时间为4min,溶剂体积对样品质量比为20∶1和样品粒径为120目的条件下,有效成分提取率最佳.对比了密闭微波萃取同索氏萃取和超声萃取丹参有效成分的差异.  相似文献   

10.
密闭系统中微波辅助萃取机制探讨   总被引:9,自引:2,他引:9  
通过与普通加热萃取虎杖中白藜芦醇的产率进行对比 ,对密闭系统中微波辅助萃取的机理进行了探讨。结果表明 ,微波辅助萃取与普通加热萃取二者的活化能相差不大 ,分别为30.06和30.32kJ·mol-1。但微波辅助萃取的表观速率常数约是普通加热萃取的20倍。并且还利用电子扫描显微镜对样品微结构进行了观察 ,研究表明 ,细胞内极性成分如水吸收了微波能后压力迅速增加导致细胞结构的破坏是MAE快速高效的关键 ,由于细胞的破坏 ,萃取剂和萃取目标化合物更容易通过细胞壁 ,加速了扩散速度 ,进而加速了萃取速度。  相似文献   

11.
In this work, a magnetic octahedral metal-organic framework (Fe3O4@NH2-MIL-101(Fe)) was synthesized for the magnetic solid-phase extraction of three anthraquinones, including aloe-emodin, emodin, and physcion, in rhubarb. The Fe3O4@NH2-MIL-101(Fe) exhibits a high specific surface area of 259.2 m2/g with an average pore size of 6.0 nm and high magnetic responsivity of 23.4 emu/g, which may be used as an adsorbent for rapid preconcentration and separation of target analytes. The main parameters for magnetic solid-phase extraction of anthraquinones, including the amount of adsorbent, extraction time, extraction temperature, extraction pH, elution solvent, and elution time, were systematically optimized. The whole extraction process requires a very low amount of adsorbent and a small volume of the sample. Besides, under the optimized conditions, the method shows satisfactory spiked recovery for anthraquinones in the range of 93.3–109.1% and the limits of detection are 1.7–3.4 ng/mL. The relative standard deviations for intra- and inter-day precision are 0.2–1.3% and 0.2–0.6%, respectively. The experimental results indicate that the developed method is feasible for the analysis of anthraquinones in rhubarb.  相似文献   

12.
Fu-You Du 《Talanta》2009,78(3):1177-1184
Ionic liquids (ILs) solutions as solvents were successfully applied in the microwave-assisted extraction (MAE) of polyphenolic compounds from medicinal plants. ILs, its concentration and MAE conditions were investigated in order to extract polyphenolic compounds effectively from Psidium guajava Linn. (P. guajava) leaves and Smilax china (S. china) tubers. The results obtained indicated that the anions and cations of ILs had influences on the extraction of polyphenolic compounds as well as the ILs with electron-rich aromatic π-system enhanced extraction ability. Under the optimized conditions, the extraction yields of the polyphenolic compounds were in the range of 79.5-93.8% with one-step extraction, and meanwhile the recoveries were in the range of 85.2-103% with relative standard deviations (R.S.D.s) lower than 5.6%. Compared to conventional extraction procedures, the results suggested that the proposed method was effective and alternative for the extraction of polyphenolic compounds from medicinal plants. In addition, the extraction mechanisms and the structures of samples before and after extraction were also investigated. ILs solutions as green solvents in the MAE of polyphenolic compounds from medicinal plant samples showed a great promising prospect.  相似文献   

13.
Traditional bioassay-guided investigation of bioactive compounds from natural products comprises critical steps, such as extraction, repeated column separation, and activity assay. Thus, the development of facile, rapid, and efficient technology is critically important. Here, a HepG2 cell-based extraction method was first developed to rapidly screen potential antitumor compounds from the seeds ofCassia obtusifolia. Then, an online extraction and enrichment–high-speed counter-current chromatography (HSCCC) strategy was fabricated to facilely and efficiently isolate target antitumor compounds, which included direct extraction from solid C. obtusifolia, removal of polar interferences, enrichment of target compounds, and preparative isolation by HSCCC using flow rate stepwise increasing mode. After further purification by Sephadex LH-20 column, five antitumor anthraquinones, aurantio-obtusin, 1-desmethylaurantio-obtusin, chryso-obtusin, obtusin, and questin, were obtained for structural characterization and bioassay verification. The results may not only provide new perspectives for facile and rapid investigation of bioactive compounds from complex natural products, but also offer a scientific basis for the potential applications of C. obtusifolia.  相似文献   

14.
In the work, a rapid, simple and high-throughput sample preparation method was developed for the determination of sulfonamide (SA) antibiotic residues in chicken breast muscle. The extraction and clean-up were online combined and up to 20 samples can be treated simultaneously in 6 min. The SAs were first extracted with acetonitrile under the action of microwave energy, and then the extract was directly introduced into the SPE column for on-line clean-up and concentration. Subsequently, the SAs eluted from the SPE column were determined by liquid chromatography-tandem mass spectrometry. The precisions of extraction results of 20 samples were in the range of 4.9-7.4%. The limits of detection and quantification obtained were in the range of 2.4-3.6 ng/g and 8.6-11.3 ng/g for SAs, respectively. The recoveries of SAs obtained by analyzing chicken muscles at three fortified levels (10, 50 and 500 ng/g) were in the range of 82.6-93.2%. The results of the validation process prove that the proposed method is suitable for treating numbers of complex samples simultaneously in a short time.  相似文献   

15.
A rapid technique based on dynamic microwave-assisted extraction (DMAE) coupled on-line with solid-phase extraction (SPE) was developed for the determination of sulfonamides (SAs) including sulfadiazine, sulfameter, sulfamonomethoxine and sulfaquinoxaline in soil. The SAs were first extracted with acetonitrile under the action of microwave energy, and then directly introduced into the SPE column which was packed with neutral alumina for preconcentration of analytes and clean-up of sample matrix. Subsequently, the SAs trapped on the alumina were eluted with 0.3% acetic acid aqueous solution and determined by liquid chromatography-tandem mass spectrometry. The DMAE parameters were optimized by the Box-Behnken design. Maximum extraction efficiency was achieved using 320 W of microwave power; 12 mL of extraction solvent and 0.8 mL min−1 of extraction solvent flow rate. The limits of detection and quantification obtained are in the range of 1.4-4.8 ng g−1 and 4.6-16.0 ng g−1 for the SAs, respectively. The mean values of relative standard deviation of intra- and inter-day ranging from 2.7% to 5.3% and from 5.6% to 6.7% are obtained, respectively. The recoveries of SAs obtained by analyzing four spiked soil samples at three fortified levels (20 ng g−1, 100 ng g−1 and 500 ng g−1) were from 82.6 ± 6.0% to 93.7 ± 5.5%. The effect of standing time of spiked soil sample on the SAs recoveries was examined. The recoveries of SAs decreased from (86.3-101.9)% to (37.6-47.5)% when the standing time changed from one day to four weeks.  相似文献   

16.
In this work, we developed a novel approach to evaluate the contents of bioactive components in rhubarb. The present method was based on the quantitative analysis of multicomponents by a single‐marker and response surface methodology approaches. The quantitative analysis of multicomponents by a single‐marker method based on high‐performance liquid chromatography coupled with photodiode array detection was developed and applied to determine the contents of 12 bioactive components in rhubarb. No significant differences were found in the results from the quantitative analysis of multicomponents by a single‐marker and the external standard method. In order to maximize the extraction of 12 bioactive compounds in rhubarb, the ultrasonic‐assisted extraction conditions were obtained by the response surface methodology coupled with Box–Behnken design. According to the obtained results, we showed that the optimal conditions would be as follows: proportion of ethanol/water 74.39%, solvent‐to‐solid ratio 24.07:1 v/w, extraction time 51.13 min, and extraction temperature 63.61°C. The analytical scheme established in this research should be a reliable, convenient, and appropriate method for quantitative determination of bioactive compounds in rhubarb.  相似文献   

17.
A rapid technique based on dynamic microwave-assisted extraction coupled with on-line solid-phase extraction of high-performance liquid chromatography (DMAE-SPE-HPLC) has been developed. A TM010 microwave resonance cavity built in the laboratory was applied to concentrate the microwave energy. The sample placed in the zone of microwave irradiation was extracted with 95% acetonitrile (ACN) aqueous solution which was driven by a peristaltic pump at a flow rate of 1.0 mL min−1. The extraction can be completed in a recirculating system in 10 min. When a number of extraction cycles were completed, the extract (1 mL) was diluted on-line with water. Then the extract was loaded into an SPE column where the analytes were retained while the unretained matrix components were washed away. Subsequently, the analytes were automatically transferred from the SPE column to the analytical column and determined by UV detector at 238 nm. The technique was used for determination of organochlorine pesticides (OCPs) in grains, including wheat, rice, corn and bean. The limits of detection of OCPs are in the range of 19-37 ng g−1. The recoveries obtained by analyzing the four spiked grain samples are in the range of 86-105%, whereas the relative standard deviation (R.S.D.) values are <8.7% ranging from 1.2 to 8.7%. Our method was demonstrated to be fast, accurate, and precise. In addition, only small quantities of solvent and sample were required.  相似文献   

18.
In this study, accelerated solid phase dynamic extraction (ASPDE) technique was used to identify biogenic volatile organic compounds (BVOCs) emitted from Norway spruce (Picea abies). Compounds that were determined in tree samples are: tricycylene, α-pinene, camphene, β-pinene, myrcene, 3-carene, p-cymene, limonene, cineole, α-phellandrene, α-terpinene, γ-terpinene and terpinolene. ASPDE showed a potential for the analysis of environmental samples as well as for field applications. This technique was further studied by using a gaseous mixture of BVOCs (sabinene, α-pinene, β-pinene, limonene, linalool, and (Z)-hexenyl acetate) and exhibited a good repeatability during all the experiments in the range of 2.5% (α-pinene) and 14.6% (linalool). However, during the analysis of samples it was observed that desorption at high temperature (230°C) can lead to the formation of artifacts, which were not observed at the desorption temperature of 100°C. Further experimental investigations revealed that monoterpenes appeared as unanticipated compounds during desorption of ASPDE samples; these compounds were degradation products of linalool.  相似文献   

19.
Presented hereafter is a novel method entailing solvent free microwave-assisted extraction (MAE) and HPLC equipped with Fluorimetric Detector (HPLC-FD) for the simultaneous determination at μgkg(-1) concentration of eight fluoroquinolone antibiotics (FQs) (Ciprofloxacin, Danofloxacin, Enrofloxacin, Flerofloxacin, Levofloxacin, Marbofloxacin, Norfloxacin and Orbifloxacin) in agricultural soils. The extraction was quantitatively performed, in a single step, by using an aqueous solution containing Mg(II) as complexing agent, thus avoiding consumption of organic solvents. The optimal MAE conditions have been established through a chemometric approach by considering temperature, irradiation time and matrix moisture or solvent, as the most important recognized variables affecting the extraction yield. Satisfying recoveries (69-110%, spikes 0.03-0.5mgkg(-1)) were gained with a single MAE cycle of 20min, at 80°C in 20% (w/v) Mg(NO(3))(2) solution as leaching agent. MAE-SPE recoveries at 10μgkg(-1), concentration near method quantification limits (MQLs), were in the range 60-85%. Good repeatability and within-lab reproducibility were observed (both in the range 1-16%). The applicability of the method to real samples was assessed on natural contaminated soils. Compared to ultrasonic-assisted extraction (UAE), MAE was shown to be highly competitive in terms of extraction efficacy and analysis speed.  相似文献   

20.
The structural and electronic properties of hydroxyanthraquinone derivatives in rhubarb, namely, chrysophanol, emodin, physcion, aloe‐emodin, rhein, and their radicals were investigated at density functional level. The bifurcated hydrogen bond property of the studied structures was investigated using the atoms in molecules theory. It turned out that the presence of the dihydroxy functionality increases the radical stability through hydrogen bonds formation and favors hydrogen atom abstraction. Bond dissociation energy and ionization potential were also determined to know if the radical scavenging activity of these compounds proceeds via an H‐atom or an electron‐transfer mechanism. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号