首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The energy spectrum analysis of X‐ray intensities with semiconductor detectors is often difficult because their energy resolution is usually not good enough to separate the different X‐ray lines. Metallic magnetic calorimeters (MMCs) can be an alternative; they can offer both high energy resolution and high intrinsic detection efficiency from 0 to 100 keV. MMCs are thermal detectors; that is to say, the energy of each absorbed photon is measured as a temperature elevation. At very low temperature, typically few tens of mK, a very large pulse height‐to‐noise ratio can be obtained that is an essential condition for high energy resolution. We are involved in the development of MMCs for metrology applications such as the determination of hard X‐ray emission intensities. For that purpose, we conceived an MMC with an energy resolution of 57 eV around 30 keV. The absorber is made of gold providing high intrinsic detection efficiency even for a small volume, greater than 90% below 60 keV. We will describe the physical principle and the practical realisation of this detector and discuss its performances by analysing the energy spectrum obtained from a 133Ba source. Preliminary outcomes of relative emission intensities of the K X‐ray of cesium are presented and compared with other experimental data and theoretical calculations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
《Current Applied Physics》2020,20(2):337-343
Radiotherapy for cancer patients requires accurate measurement of the absorbed dose of radiation in a treatment planning step. Various types of radiation detectors are currently utilized for dose measurement. Among them, calorimeters are known to be the most precise detector for measuring absorbed dose, but their on-site application is limited by the large size of the equipment. We developed a miniaturized chip calorimeter for application as a radiation detector. The calorimetric radiation detector was built using micro/nano fabrication techniques, and consists of an SU-8 photoresist absorber and high-sensitivity vanadium oxide (VOx) thermistors. The thermistors had a temperature resolution of 135 μK, and the calorimeter showed a thermal conductance of 11 μW/K. The detector was irradiated with various X-ray dose rates from a linear accelerator, and the absorbed dose to SU-8 was measured. The detector responses showed high linearity with dose rates, demonstrating the feasibility of the radiation detector for practical uses.  相似文献   

3.
硅微条探测器因具有很强的位置分辨率与能量分辨率而在世界各大核物理实验室得到广泛应用。中国科学院近代物理研究所研制了性能优越、位置精度达到0.5 mm×0.5 mm的双面硅微条探测器,用于HIRFL-CSR的外靶实验终端谱仪(ETF)上,用作径迹测量以及△E-E望远镜系统△E的探测。硅微条探测器体积小、集成度高,利用柔性印刷电路板(FPCB)引出信号,配合ASIC芯片的前端电路,能够方便地给出每一条的能量信息和位置信息。在此详细阐述了在HIRFL-CSR的ETF上双面硅微条探测器阵列的搭建,并测量了放射源在真空中探测单元的能量分辨本领。结果表明,该硅条探测器的每个探测单元对5~9 MeV能量的α粒子的能量分辨率在1%左右。  相似文献   

4.
Helgason  Örn 《Hyperfine Interactions》2004,159(1-4):379-383
Time Differential gamma–gamma Perturbed Angular Correlation spectroscopy has traditionally been done using scintillation detectors along with constant–fraction discriminators, spectroscopy amplifiers, single channel analyzers, and time to amplitude detectors. We describe a new generation spectrometer where these electronics are replaced by high speed digital transient recorders that record the output from each scintillation detector. The energy and time-of-arrival of gamma rays in any detector can be determined accurately. Many experimental difficulties related to electronics are eliminated; the number of detectors can be increased with no increase in complexity of the apparatus; coincidences among any two detectors are measurable; and coincidences separated by as little as a ns are detectable in principle within one detector. All energies are collected, and energy windows are imposed by software filtering, permitting both high energy resolution and high data-gathering power.  相似文献   

5.
为突破传统半导体核探测器耐高温与抗辐照性能不足的瓶颈,采用4H-SiC宽禁带半导体材料研制了4H-SiC探测器,并研究其构成的探测系统对粒子的能量分辨率和能量线性度。所研制4H-SiC探测器漏电流低,当外加反向偏压为200 V时,其漏电流仅14.92 nA/cm2。采用具有5种主要能量粒子的226Ra源研究其构成的探测系统对粒子的能量分辨率,获得4H-SiC探测系统对4.8~7.7 MeV能量范围内粒子的能量分辨率为0.61%~0.90%,与国际上报道的高分辨4H-SiC探测系统能量分辨率一致。同时,实验结果表明:4H-SiC探测系统对该能量范围内粒子的能量线性度十分优异,线性相关系数为0.999 99。  相似文献   

6.
为突破传统半导体核探测器耐高温与抗辐照性能不足的瓶颈,采用4H-SiC宽禁带半导体材料研制了4H-SiC探测器,并研究其构成的探测系统对α粒子的能量分辨率和能量线性度。所研制4H-SiC探测器漏电流低,当外加反向偏压为200V时,其漏电流仅14.92nA/cm2。采用具有5种主要能量α粒子的226 Ra源研究其构成的探测系统对α粒子的能量分辨率,获得4H-SiC探测系统对4.8~7.7 MeV能量范围内α粒子的能量分辨率为0.61%~0.90%,与国际上报道的高分辨4H-SiC探测系统能量分辨率一致。同时,实验结果表明:4H-SiC探测系统对该能量范围内α粒子的能量线性度十分优异,线性相关系数为0.999 99。  相似文献   

7.
基于蒙特卡罗的模拟方法,设计了一个基于塑料闪烁光纤阵列的射线位置灵敏探测器并对其性能进行了系统的研究。分析了该探测器在高能粒子辐照下的康普顿散射特性和圆形塑料闪烁光纤的能量泄漏情况,发现随着入射能量的不同,康普顿边缘峰值也相应变化,并且和入射光子能量一一对应。考虑阵列间粒子串扰的情况下,利用此特性得到该位置灵敏探测器在0.8~7.0 MeV的入射能量下,能量分辨率和空间分辨率分别能够达到10%和cm量级。但由于闪烁光纤原子序数较低,在较高能区的探测效率也较低,只有15%左右或更低。这就使得利用闪烁光纤阵列探测器不能同时满足较好的空间分辨率和能量分辨率,两者出现一定的矛盾。  相似文献   

8.
Most energy‐dispersive X‐ray fluorescence (EDXRF) instruments use Si diodes as X‐ray detectors. These provide very high energy resolution, but their sensitivity falls off at energies of 10–20 keV. They are well suited for measuring the K lines of elements with Z < 40, but for heavier elements, one must use K lines at low efficiency or use L or M lines that often overlap other lines. Either is a challenge for accurate quantitative analysis. CdTe detectors offer much higher efficiency at high energy but poorer energy resolution compared with Si diodes. In many important EDXRF measurements, both high and low Z elements are present. In this paper, we will compare the precision and accuracy of systems using the following: (1) a high resolution Si detector, (2) a high efficiency CdTe detector, and (3) a composite system using both detectors. We will show that CdTe detectors generally offer better analytical results than even a high resolution silicon drift detectors for K lines greater than 20 or 25 keV, whereas the high resolution Si detectors are much better at lower energies. We will also show the advantages of a combined system, using both detectors. Although a combined system would be more expensive, the increased accuracy, precision, and throughput will often outweigh the small increase in cost and complexity. The systems will be compared for representative applications that include both high and low Z elements. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
基于蒙特卡罗的模拟方法,设计了一个基于塑料闪烁光纤阵列的γ射线位置灵敏探测器并对其性能进行了系统的研究。分析了该探测器在高能γ粒子辐照下的康普顿散射特性和圆形塑料闪烁光纤的能量泄漏情况,发现随着入射能量的不同,康普顿边缘峰值也相应变化,并且和入射光子能量一一对应。考虑阵列间粒子串扰的情况下,利用此特性得到该位置灵敏探测器在0.8~7.0 MeV的γ入射能量下,能量分辨率和空间分辨率分别能够达到10%和cm量级。但由于闪烁光纤原子序数较低,在较高能区的探测效率也较低,只有15%左右或更低。这就使得利用闪烁光纤阵列探测器不能同时满足较好的空间分辨率和能量分辨率,两者出现一定的矛盾。  相似文献   

10.
In recent years, radically new detectors for soft x rays and gamma rays were developed on the basis of superconducting tunnel junctions. These detectors made it possible to attain a very high resolution, but their largest area is overly small for employing them in nuclear spectroscopy. This study is devoted to the problem of designing a superconductor detector whose dimensions are sufficiently large for detecting gamma rays and which is suitable for applications in various fields of science. The detector consists of three units: an absorber, a hot-electron calorimeter, and a tunnel-junction (normal metal-insulator-superconductor) thermometer. The absorber has a multilayer structure consisting of thin superconductor layers arranged in the order of variation of the superconductor energy gap. This structure specifies the direction of hot-electron diffusion. Since quasiparticles diffuse in a specific direction, the diffusion time becomes shorter than that in the case of conventional diffusion. It is necessary that this time be shorter than the time of electron-phonon interaction. Calculations of the diffusion time for the particular structure in question and data from the literature on electron-phonon interaction show that the operating area of the detector can be about 3 to 4 mm2 and that its thickness can be about 1 mm. These dimensions can be considerably increased in the case of especially pure superconductors.  相似文献   

11.
To reduce the discharge of the standard bulk Micromegas and GEM detectors, a GEM-Micromegas detector was developed at the Institute of High Energy Physics. Taking into account the advantages of the two detectors, one GEM foil was set as a preamplifier on the mesh of Micromegas in the structure and the GEM preamplification decreased the working voltage of Micromegas to significantly reduce the effect of the discharge. At the same gain, the spark probability of the GEM-Micromegas detector can be reduced to a factor 0.01 compared to the standard Micromegas detector, and an even higher gain could be obtained. This paper describes the performance of the X-ray beam detector that was studied at 1W2B Laboratory of Beijing Synchrotron Radiation Facility. Finally, the result of the energy resolution under various X-ray energies was given in different working gases. This indicates that the GEM-Micromegas detector has an energy response capability in an energy range from 6 keV to 20 keV and it could work better than the standard bulk-Micromegas.  相似文献   

12.
The results are presented of the computer modeling of the processes of heat propagation in the single layer detection pixel of the thermoelectric single photon detector after the absorption of photon with the energy of 1–1000 eV. The different geometries of the detection pixel consisting of the tungsten absorber and thermoelectric sensor from the strongly correlated FeSb2 semiconductor are considered. The differences of temporal dependence of the signal appearing on the sensor for various size of the sensitive pixel elements are studied in detail. The energy resolution and the count rate of the detector are estimated. It is shown that the FeSb2 sensor of thermoelectric detector provides the generation of significantly higher signal as compared with the CeB6 sensor and has the perspectives of application in the single photon detectors with the high energy resolution.  相似文献   

13.
《X射线光谱测定》2004,33(4):246-252
The silicon drift detector is a compact, high‐resolution and energy‐dispersive x‐ray detector. The differences between the conventional silicon drift detectors with an active area of 5 mm2 and new detectors with larger areas are outlined. Several constraints from fundamental physical and electronic properties are given, which limit the achievable energy resolution and size of the active area. The expected characteristics of larger upcoming devices are calculated. The deterioration of the energy resolution at very high count rates is quantitatively explained. Some limitations are eliminated if the chip is segmented into several cells with individual read‐out nodes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
唐孝威 《物理学进展》2011,1(3):305-313
本文简要地评述粒子探测器的发展近况。文中讨论了以下问题:大型高能粒子探测器、高能实验电子学及探测器物理。  相似文献   

15.
像素探测器因其优异的位置分辨能力在高能粒子物理实验的内径探测器中有着广泛应用,随着应用场景的发展,许多物理实验要求探测器及其读出电子学也具备高精度时间测量的能力。针对像素探测器时间测量的需求,设计完成了一款具备高事例率处理能力、高精度特点的TDC(Time-to-Digital Conversion)ASIC(Application Specific Integrated Circuit)原型电路,将来可以作为核心组成部分集成到像素探测器前端读出ASIC中。采用粗细结合的方案完成TDC的设计,其中粗时间测量基于计数器实现,细时间测量采用TAC(Time-to-Amplitude Converter)结合ADC(Time-to-Amplitude Converter)的结构实现,基于130 nm工艺完成了原型电路的设计。对TDC进行仿真,仿真结果表明,该电路可以最多处理连续11个事例,相邻事例的最短时间间隔为500 ps,bin size达到了2 ps,DNL(Differential Non-Linearity)小于2.8 ps,时间测量精度好于5 ps RMS。  相似文献   

16.
介质型脉冲高能中子探测器   总被引:2,自引:0,他引:2  
首次报道一种基于反冲质子法和高速带电粒子在物质表面引起二次电子发射的高能中子探测方法,研制成功的新一代强流脉冲高能中子探测器,即介质型脉冲高能中子探测器.与传统的强流脉冲中子探测器相比,该探测器对中子的探测及信号的传输过程是在介质中完成的,因而不需要真空和高压也可以正常工作,并具有多项优异的物理性能.该探测器的输出信号来自于高能中子在聚乙烯转换靶产生的高能反冲质子和这些质子穿越电荷收集极表面时产生的部分二次电子.选择适当的卡阈吸收片和电荷收集极材料,二次电子在探测灵敏度中的份额及其随能量的变化可由实验测定.  相似文献   

17.
基于激光尾场加速电子的高能X射线源具有高光子能量与小源尺寸的特点,在高空间分辨无损检测方面发挥着十分重要的作用.在X光机上测量了CsI针状闪烁屏、锗酸铋(BGO)闪烁阵列与DRZ闪烁屏的本征空间分辨率,并模拟了三类探测器对高能X射线的能量沉积响应,其中CsI针状闪烁屏的空间分辨率高达8.7 lp/mm.采用Ta转换靶产生的高能X射线开展透视照相,能够分辨最高面密度33.0 g/cm~2的两层客体结构.开展了X射线照相、X射线与电子混合照相以及电子照相三种情况的比对实验,在X射线产额不足或探测效率不够情况下采用X射线与电子混合透视照相的方案,以牺牲对比度为代价,能较大程度地提高图像信号强度.  相似文献   

18.
It is shown that the energy resolution of silicon detectors, estimated from α-ray spectra irradiated by a reference α source (i.e., the surface resolution), is not always an indicator of detector quality. The energy resolution found from the spectra of particles that penetrate deeply into the detector material (i.e., the depth resolution) can be quite inferior to the surface resolution. It is proposed that detectors be tested in a quasimochromatic neutron flux.  相似文献   

19.
碲锌镉材料(CdZnTe)是目前探测X射线和γ射线的最好材料之一。将241 Am和137 Cs辐射源作用于像素CdZnTe探测器,通过实验和仿真分别得到能量谱估计、能量分辨率和峰值效率。由实验和仿真结果得出:在662keV的高能量下,厚度较大的CdZnTe探测器可获得更高的能量分辨率和峰值效率,但在59.5keV低能处会出现拖尾升高和电荷损失的现象;厚度较薄的探测器在低能处的特性反而更好。  相似文献   

20.
碲锌镉材料(CdZnTe)是目前探测X射线和射线的最好材料之一。将241Am和137Cs辐射源作用于像素CdZnTe探测器,通过实验和仿真分别得到能量谱估计、能量分辨率和峰值效率。由实验和仿真结果得出:在662 keV的高能量下,厚度较大的CdZnTe探测器可获得更高的能量分辨率和峰值效率,但在59.5 keV低能处会出现拖尾升高和电荷损失的现象; 厚度较薄的探测器在低能处的特性反而更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号