首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel magnetic chromium and sulfur co-doped TiO2 photocatalysts (M-Cr/S/TiO2) have been prepared by a sol?Cgel process, using magnetic hollow fly ash microspheres as support material. The crystal phase of M-Cr/S/TiO2 was characterized by X-ray diffraction, UV?Cvisible absorption spectroscopy, and transmission electron microscopy. The photocatalytic activity of the photocatalysts was examined by photodegradation of methyl orange in aqueous solution under visible light irradiation. The results showed that chromium and sulfur co-doped catalysts (Cr/S/TiO2) containing 0.60?% (atomic ratio) chromium and 1.2?% (atomic ratio) sulfur calcined at 450?°C for 2?h had high catalytic efficiency under visible irradiation. It is worth mentioning that the floating M-Cr/S/TiO2 catalyst had greater photocatalytic activity than Cr/S/TiO2 powder. Therefore, M-Cr/S/TiO2 is a promising, high-performing, visible-light-driven photocatalyst.  相似文献   

2.
为提高太阳能转化效率, 高效响应可见光的光催化剂的研究十分必要. 本研究以硫化镉、氯化钯、醋酸镍和硫脲为原料, 利用水热法制备了NiS-PdS/CdS复合光催化剂. 通过X射线衍射(XRD)、紫外-可见光漫反射光谱(DRS)、透射电子显微镜(TEM)和光致发光(PL)光谱等手段对光催化剂进行了表征, 并在乳酸牺牲剂中对光解水制氢活性进行了测试. 结果表明: 助催化剂NiS 和PdS 能较好地分布在CdS 表面上, 形成共负载的NiS-PdS/CdS 光催化剂, 其可见光下的活性比CdS明显增强, 当NiS 和PdS 负载量分别在1.5%和0.41%(w)时, NiS-PdS/CdS获得最好活性, 最大产氢量达到6556 μmol·h-1, 是CdS活性的7倍, 是NiS/CdS的近3倍, 测得在λ=420 nm时的表观量子效率为47.5%. 助催化剂NiS 和PdS分别起到传递光生电子和光生空穴的作用,两者共负载相比于单独负载, 能使光生载流子的迁移和分离效率更高, 因此提高了光催化产氢活性.  相似文献   

3.
Cu(i)-substituted metal oxide photocatalysts were prepared using molten CuCl treatment of wide band gap photocatalysts. The Cu(i)-substituted metal oxide photocatalysts possessed a new absorption band in the visible light region and showed photocatalytic activity for hydrogen evolution from an aqueous solution containing sulfur sacrificial reagents under visible light irradiation. Notably, the Cu(i)–K2La2Ti3O10 and Cu(i)–NaTaO3 photocatalysts showed relatively high activities for hydrogen evolution and gave apparent quantum yields of 0.18% at 420 nm. These photocatalysts responded up to 620 nm. Thus, Cu(i)-substitution using a molten CuCl treatment was an effective strategy for sensitizing a metal oxide photocatalyst with a wide band gap to visible light.  相似文献   

4.
Photoelectrochemical measurements of TiO2, NaTaO3, and Cr or Sb doped TiO2 and SrTiO3 photocatalysts were carried out in H2 and O2 saturated electrolytes in order to evaluate the reverse reactions during water photolysis. The poor activity of TiO2 as a result of reverse photoreactions of O2 reduction and H2 oxidation was revealed with the respective high cathodic and anodic photocurrents. The rise in the photocurrents at NaTaO3 after La doping was in harmony with the doping-induced increase in the photocatalytic activity. NiO loading suppresses the O2 photoreverse reactions, which declines photocatalytic activity, and/or promotes the photo-oxidation of water, because the O2 photo-reduction current was scarcely observed near the flatband potential. Photocurrents of O2 reduction and H2 oxidation were observed under visible light for the Cr and Sb doped SrTiO3 and TiO2, respectively. These phenomena are in harmony with the previous reports on the photocatalysts examined with sacrificial reagents.  相似文献   

5.
《Arabian Journal of Chemistry》2020,13(11):8347-8360
FeN -co-doped TiO2 photocatalysts are prepared by sol–gel method using titanium tetraisopropoxide, urea and iron(II) acetylacetonate as precursors of titania, nitrogen and iron, respectively. The prepared samples are analysed from chemical-physical point of view by X-ray diffraction (XRD), Raman spectroscopy, UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS), specific surface area measurements and scanning electron microscopy (FESEM). UV–Vis DRS spectra evidence that the co-doping of TiO2 with N and Fe leads to the narrowing of the band gap value (2.7 eV) with respect to Fe-doped TiO2 (2.8 eV) and N-doped TiO2 (2.9–3 eV). XRD patterns show that photocatalysts are mainly in anatase phase and Fe and N ions are successfully incorporated into the TiO2 lattice. The average crystallite size of Fe-N co-doped TiO2 is slightly lower than the other samples and equal to about 7 nm and the specific surface area of the co-doped sample results to be 117 m2 g−1. Photocatalytic performances of all prepared samples are evaluated by analysing the degradation of Acid Orange 7 azo dye under visible light irradiation. Photocatalytic efficiency obtained using FeN co-doped TiO2 strongly increases compared to undoped TiO2, N-doped TiO2 and Fe-doped TiO2 photocatalysts. In detail, using the co-doped photocatalyst, dye discoloration and mineralization result equal to about 90 and 83% after 60 min of LEDs visible light irradiation, underlining the best performances of the FeN co-doped TiO2 photocatalyst both in terms of treatment time and electric energy consumption.  相似文献   

6.
ZrO2 is considered a huge-gap semiconductor (band gap ≈ 5 eV). To improve the visible-light photocatalytic activities of ZrO2, an efficient Cr, SO4 2? co-doped ZrO2 photocatalyst was synthesized by the simple impregnation method followed by calcination at different calcination temperatures (300, 400, 500, and 600 °C) for 3 h. The synthesized photocatalysts were characterized by x-ray diffraction, transmission electron microscopy analysis, scanning electron microscopy analysis, energy dispersive X-ray spectroscopy analysis, FT-IR spectroscopic technique, potentiometric titration and UV–Vis spectroscopy analysis. ZrO2 co-doped with Cr and SO4 2? shows more efficiency than SO4 2?-doped ZrO2 in several aspects like surface structure, decreasing electron–hole recombination and band gap energy. The photodegradation of methylene blue dye for SO4 2?-doped ZrO2 and Cr, SO4 2?-co-doped ZrO2 has been investigated. The photocatalytic reaction confirmed that the co-doped ZrO2 photocatalyst showed higher photocatalytic activity than mono-doped ZrO2.  相似文献   

7.
Undoped layered oxynitrides have not been considered as promising H2-evolution photocatalysts because of the low chemical stability of oxynitrides in aqueous solution. Here, we demonstrate the synthesis of a new layered perovskite oxynitride, K2LaTa2O6N, as an exceptional example of a water-tolerant photocatalyst for H2 evolution under visible light. The material underwent in-situ H+/K+ exchange in aqueous solution while keeping its visible-light-absorption capability. Protonated K2LaTa2O6N, modified with an Ir cocatalyst, exhibited excellent catalytic activity toward H2 evolution in the presence of I as an electron donor and under visible light; the activity was six times higher than Pt/ZrO2/TaON, one of the best-performing oxynitride photocatalysts for H2 evolution. Overall water splitting was also achieved using the Ir-loaded, protonated K2LaTa2O6N in combination with Cs-modified Pt/WO3 as an O2 evolution photocatalyst in the presence of an I3/I shuttle redox couple.  相似文献   

8.
Developing highly efficient and low-cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel–cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble-metal co-catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so-called L-NiCo nanosheets with a nonstoichiometric composition and O2−/Co3+ ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O2− and Co3+ ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H2 evolution rate of 1.7 μmol h−1 under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm.  相似文献   

9.
In this study, pure titanium dioxide (TiO2), Ta-doped TiO2, S-doped TiO2, and Ta-S-codoped rutile TiO2 photocatalysts were prepared by a sol-gel method. To evaluate the properties of the synthesized samples, X-ray diffraction analysis (XRD) and X-ray photoelectron spectroscopy (XPS) were applied. XRD detection results showed that the samples contained rutile phase basically. Scanning electron microscope observation showed that the morphology of Ta-S-TiO2 was nearly spherical. Transmission electron microscope investigation indicated that Ta-S-TiO2 had a flower-shaped structure consisting of many nanorods. The measurement of Brunauer-Emmett-Teller (BET)-specific surface areas (SBET) showed that tantalum and sulfur codoping can effectively increase the SBET of TiO2. XPS results indicated that Ta was in the form of Ta5+ in the TiO2 structure. Finally, the photocatalytic activities of synthesized photocatalyst samples were measured for the degradation of methylene blue in ultraviolet and visible light irradiation. The results demonstrated that the Ta-S-codoped rutile TiO2 photocatalyst had better photocatalytic performance than pure rutile TiO2, Ta-doped rutile TiO2 and S-doped rutile TiO2 photocatalyst.
Effects of pure TiO2, Ta-TiO2, S-TiO2, and Ta-S-TiO2 on degradation of MB under visible light irradiation (a) and ultraviolet (UV) irradiation (b) were studied. Ta-S-TiO2 exhibited a good photocatalytic performance under UV and visible light irradiation.
  相似文献   

10.
At present, inefficient charge separation of single photocatalyst impedes the development of photocatalytic hydrogen evolution. In this work, the CoSX/NiCo-LDH core-shell co-catalyst was cleverly designed, which exhibit high activity and high stability of hydrogen evolution in anhydrous ethanol system when coupled with CdS. Under visible light (λ≥420 nm) irradiation, the 3 %Co/NiCo/CdS composite photocatalyst exhibits a surprisingly high photocatalytic hydrogen evolution rate of 20.67 mmol g−1 h−1, which is 59 times than that of the original CdS. Continuous light for 20 h still showed good cycle stability. In addition, the 3 %Co/NiCo/CdS composite catalyst also shows good hydrogen evolution performance under the Na2S/Na2SO3 and lactic acid system. The fluorescence (PL), ultraviolet-visible diffuse reflectance (UV-vis) and photoelectrochemical tests show that the coupling of CdS and CoSX/NiCo-LDH not only accelerates the effective transfer of charges, but also greatly increases the absorption range of CdS to visible light. Therefore, the hydrogen evolution activity of the composite photocatalyst has been significantly improved. This work will provide new insights for the construction of new co-catalysts and the development of composite catalysts for hydrogen evolution in multiple systems.  相似文献   

11.
Undoped layered oxynitrides have not been considered as promising H2‐evolution photocatalysts because of the low chemical stability of oxynitrides in aqueous solution. Here, we demonstrate the synthesis of a new layered perovskite oxynitride, K2LaTa2O6N, as an exceptional example of a water‐tolerant photocatalyst for H2 evolution under visible light. The material underwent in‐situ H+/K+ exchange in aqueous solution while keeping its visible‐light‐absorption capability. Protonated K2LaTa2O6N, modified with an Ir cocatalyst, exhibited excellent catalytic activity toward H2 evolution in the presence of I? as an electron donor and under visible light; the activity was six times higher than Pt/ZrO2/TaON, one of the best‐performing oxynitride photocatalysts for H2 evolution. Overall water splitting was also achieved using the Ir‐loaded, protonated K2LaTa2O6N in combination with Cs‐modified Pt/WO3 as an O2 evolution photocatalyst in the presence of an I3?/I? shuttle redox couple.  相似文献   

12.
P, N, and Mo ternary co-doped nano TiO2 photocatalysts ((P, N, Mo)-TiO2) were prepared by a single step sol–gel method, which show much enhanced photocatalytic activities over Mo-TiO2, (P, N)-TiO2, un-doped TiO2 and Degussa P25 under visible light irradiation. The degradation rate of 0.72Mo–P-TiO2 is as high as 65.3%, which is about 6.7 times of that of Degussa P25. Possible reasons for the improvement of photocatalytic activities were analyzed.  相似文献   

13.
Crystalline and porous covalent organic frameworks (COFs) and metal‐organic frameworks (MOFs) materials have attracted enormous attention in the field of photocatalytic H2 evolution due to their long‐range order structures, large surface areas, outstanding visible light absorbance, and tunable band gaps. In this work, we successfully integrated two‐dimensional (2D) COF with stable MOF. By covalently anchoring NH2‐UiO‐66 onto the surface of TpPa‐1‐COF, a new type of MOF/COF hybrid materials with high surface area, porous framework, and high crystallinity was synthesized. The resulting hierarchical porous hybrid materials show efficient photocatalytic H2 evolution under visible light irradiation. Especially, NH2‐UiO‐66/TpPa‐1‐COF (4:6) exhibits the maximum photocatalytic H2 evolution rate of 23.41 mmol g?1 h?1 (with the TOF of 402.36 h?1), which is approximately 20 times higher than that of the parent TpPa‐1‐COF and the best performance photocatalyst for H2 evolution among various MOF‐ and COF‐based photocatalysts.  相似文献   

14.
光催化剂的晶体结构、电子结构、表面结构等都会对自身性质产生决定性的作用,因此认识和理解光催化材料自身结构和光催化性能之间的内在联系有助于设计合成更高效的光催化剂以及光催化复合体系.本文通过聚合络合法和溶胶凝胶水热法分别制备了镧和铬共掺杂的光催化剂,标记为和在碘化钠或甲醇作为牺牲试剂的产氢反应中,担载Pt的样品显示了光催化活性,而担载Pt的样品活性很低,甚至无活性.我们将这两种材料分别作为产氢光催化剂与三氧化钨耦合构建Z机制全分解水体系.研究发现,只有体系观察到了氢气和氧气的产生.在第一个10 h的循环反应中,产生的摩尔比为3.7,明显高于水分解为2的化学计量比.这是因为在反应起始时加入的是Na I,质子还原产氢反应占据了主导.随着氢气的不断产生,部分I-被氧化成了IO_3-,而IO_3-的存在就可以驱动氧气的产生,由于溶液中氧化还原电的共存就可以持续驱动氢气和氧气的同时生成.为了测试体系的稳定性,我们将前面产生的气体完全抽空后又进行第二次10 h的循环反应,总共进行三次循环反应.在第一次循环过程中氢气、氧气生成速率分别为9.1和2.4mmol h~(–1),第二次循环其速率分别为9.9和3.7mmol h~(–1),第三次循环速率分别达到10.4和4.9mmol h~(–1).此外,通过三次循环后摩尔比为2.1,接近水分解的化学计量比.结合紫外可见漫反射光谱和Mott-Schottky曲线可以确定两种样品的能带位置.从能带位置示意图可知,两种样品都具有足够负的导带电势还原质子产氢以及足够正的价带电势氧化水产氧.需要指出的是样品的导带电势比样品的导带电势更负,这意味着前者的导带电势更有利于还原质子产氢.霍尔效应测试的结果表明,两种样品均显示出n型半导体的特征,此外样品显示出比样品更快的载流子迁移率以及更高的载流子浓度.因此,两种样品不同的导带位置以及不同的载流子迁移率和载流子浓度很可能是造成两者光催化性能具有显著差异的主要原因.  相似文献   

15.
Owing to the exorbitant overpotential and serious carrier recombination of graphitic carbon nitride (gC3N4),noble metal (NM) is usually served as the H2evolution co-catalyst.Although the NM (such as Pt)nanoparticles can reduce the H2evolution overpotential,the weak van der Waals interaction between Pt and g-C3N4makes against the charge transfer.Herein,the solvothermal method is developed to achieve semi-chemical interaction betwee...  相似文献   

16.
The surface area and the pentane isomerization activity of Pt/MoO3 were enlarged by H2 reduction. The enlargements was observed only when the reduction proceeded through the formation of hydrogen molybdenum bronze, HxMoO3. The catalytic activities of H2-reduced MoO3 with different noble metals for pentane isomerization and 2-propanol dehydration depended on the ability of noble metal to produce the HxMoO3 phases. H2-reduced Pt/MoO3 was more active for pentane isomerization than Pt/H, and its activity was comparable to that of Pt/HZSM-5. In heptane isomerization, H2-reduced Pt/MoO3 exhibited a lower activity than Pt/H, although heptane was isomerized very selectively. Strong adsorption of heptane onto H2-reduced Pt/MoO3 is likely to be a reason for its lower heptane isomerization activity.  相似文献   

17.
Bifunctional TiO2 photocatalysts co-doped with nitrogen and sulfur were prepared by the controlled thermal decomposition of ammonium titanyl sulfate precursor. They have both photocatalytic activity and Br?nsted acidity, and thus are active in the photoreduction of Cr(VI) under solar light irradiation without the addition of acids. The activity is superior to that of Degussa P25 in the acidified suspension at the same pH adjusted by H2SO4.  相似文献   

18.
Colloidal photocatalysts can utilize solar light for the conversion of CO2 to carbon-based fuels, but controlling the product selectivity for CO2 reduction remains challenging, in particular in aqueous solution. Here, we present an organic surface modification strategy to tune the product selectivity of colloidal ZnSe quantum dots (QDs) towards photocatalytic CO2 reduction even in the absence of transition metal co-catalysts. Besides H2, imidazolium-modified ZnSe QDs evolve up to 2.4 mmolCO gZnSe−1 (TONQD > 370) after 10 h of visible light irradiation (AM 1.5G, λ > 400 nm) in aqueous ascorbate solution with a CO-selectivity of up to 20%. This represents a four-fold increase in CO-formation yield and 13-fold increase in CO-selectivity compared to non-functionalized ZnSe QDs. The binding of the thiolated imidazolium ligand to the QD surface is characterized quantitatively using 1H-NMR spectroscopy and isothermal titration calorimetry, revealing that a subset of 12 to 17 ligands interacts strongly with the QDs. Transient absorption spectroscopy reveals an influence of the ligand on the intrinsic charge carrier dynamics through passivating Zn surface sites. Density functional theory calculations indicate that the imidazolium capping ligand plays a key role in stabilizing the surface-bound *CO2 intermediate, increasing the yield and selectivity toward CO production. Overall, this work unveils a powerful tool of using organic capping ligands to modify the chemical environment on colloids, thus enabling control over the product selectivity within photocatalyzed CO2 reduction.

A photocatalyst system consisting of ZnSe quantum dots modified with a thiolated imidazolium capping ligand for visible light-driven reduction of aqueous CO2 to CO is reported without the need for a metal complex co-catalyst.  相似文献   

19.
Bimetallic AgPd nanoparticles have been synthesized before, but the interfacial electronic effects of AgPd on the photocatalytic performance have been investigated less. In this work, the results of hydrogen evolution suggest that the bimetallic AgPd/g-C3N4 sample has superior activity to Ag/g-C3N4 and Pd/g-C3N4 photocatalysts. The UV/Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, CO adsorption diffuse reflectance FTIR spectroscopy, and FTIR results demonstrate that in the AgPd/g-C3N4, the surface electronic structures of Pd and Ag are changed, which is beneficial for faster photogenerated electron transfer and greater H2O molecule adsorption. In situ ESR spectra suggest that, under visible light irradiation, there is more H2O dissociation to radical species on the AgPd/g-C3N4 photocatalyst. Furthermore, DFT calculations confirm the interfacial electronic effects of AgPd/g-C3N4, that is, Pdδ−⋅⋅⋅Agδ+, and the activation energy of H2O molecule dissociation on AgPd/g-C3N4 is the lowest, which is the main contributor to the enhanced photocatalytic H2 evolution.  相似文献   

20.
In the present work, bismuth vanadate composited photocatalysts were synthesized and characterized. X‐ray diffractometry and Raman results showed that the particles were well crystallized, and formed by the complex of monoclinic BiVO4 and TiO2. On electron microscopy, the photocatalyst exhibited high crystallization, agglutination and irregular shape, and was surrounded by numerous TiO2 particles. The study of surface areas showed that the specific surface area of 30‐BiVO4/TiO2 composited was 112 m2·g?1, which was nearly 10 times that of pure BiVO4. The ultraviolet–visible diffuse reflectance spectra indicated the composited photocatalyst were activated in visible light. The activity of photocatalytic water splitting was studied. The results showed that monomer BiVO4 photocatalyst was not able to produce hydrogen under any light source. BiVO4/TiO2 composited photocatalysts, however, were capable of generating hydrogen. Under UV light irradiation for 120 min, 1 g catalyst dispersed in 50 mL deionized water produced almost 1 mL hydrogen, such that the productivity of hydrogen was higher than that of P25‐TiO2. Photocatalytic decomposition of water under visible light also confirmed that the BiVO4/TiO2 composited photocatalyst had the ability of water splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号