首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this article we study the combined effect of internal heating and time-periodic gravity modulation on thermal instability in a closely packed anisotropic porous medium, heated from below and cooled from above. The time-periodic gravity modulation, considered in this problem can be realized by vertically oscillating the porous medium. A weak non-linear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number has been obtained in terms of the amplitude of convection which is governed by the non-autonomous Ginzburg?CLandau equation derived for the stationary mode of convection. The effects of various parameters such as; internal Rayleigh number, amplitude and frequency of gravity modulation, thermo-mechanical anisotropies, and Vadász number on heat transport has been analyzed. It is found that the response of the convective system to the internal Rayleigh number is destabilizing. Further it is found that the heat transport can also be controlled by suitably adjusting the external parameters of the system.  相似文献   

2.
The article deals with nonlinear thermal instability problem of double-diffusive convection in a porous medium subjected to temperature/gravity modulation. Three types of imposed time-periodic boundary temperature (ITBT) are considered. The effect of imposed time-periodic gravity modulation (ITGM) is also studied in this problem. In the case of ITBT, the temperature gradient between the walls of the fluid layer consists of a steady part and a time-dependent periodic part. The temperature of both walls is modulated in this case. In the problem involving ITGM, the gravity field has two parts: a constant part and an externally imposed time-periodic part. Using power series expansion in terms of the amplitude of modulation, which is assumed to be small, the problem has been studied using the Ginzburg–Landau amplitude equation. The individual effects of temperature and gravity modulation on heat and mass transports have been investigated in terms of Nusselt number and Sherwood number, respectively. Further the effects of various parameters on heat and mass transports have been analyzed and depicted graphically.  相似文献   

3.
The effect of time-periodic temperature/gravity modulation on thermal instability in a fluid-saturated rotating porous layer has been investigated by performing a weakly nonlinear stability analysis. The disturbances are expanded in terms of power series of amplitude of convection. The Ginzburg–Landau equation for the stationary mode of convection is obtained and consequently the individual effect of temperature/gravity modulation on heat transport has been investigated. Further, the effect of various parameters on heat transport has been analyzed and depicted graphically.  相似文献   

4.
In the present study, double-diffusive convection in an anisotropic porous layer with an internal heat source, heated and salted from below, has been investigated. The generalized Darcy model is employed for the momentum equation. The fluid and solid phases are considered to be in equilibrium. Linear and nonlinear stability analyses have been performed. For linear theory normal mode technique has been used, while nonlinear analysis is based on a minimal representation of truncated Fourier series. Heat and mass transfers across the porous layer have been obtained in terms of Nusselt number Nu and Sherwood number Sh, respectively. The effects of internal Rayleigh number, anisotropy parameters, concentration Rayleigh number, and Vadasz number on stationary, oscillatory, and weak nonlinear convection are shown graphically. The transient behaviors of Nusselt number and Sherwood number have been investigated by solving the finite amplitude equations using a numerical method. Streamlines, isotherms, and isohalines are drawn for both steady and unsteady (time-dependent) cases. The results obtained, during the above analyses, have been presented graphically, and the effects of various parameters on heat and mass transfers have been discussed.  相似文献   

5.
Thermal instability in a horizontal porous medium saturated with temperature-dependant viscous fluid has been considered, and the effect of time-periodic temperature modulation has been investigated. The amplitudes of temperature modulation at the lower and upper surfaces are considered to be very small and the disturbances are expanded in terms of power series of amplitude of convection. A weak non-linear stability analysis has been performed for the stationary mode of convection, and heat transport in terms of the Nusselt number, which is governed by the non-autonomous Ginzburg–Landau equation, is calculated. The effects of thermo-rheological parameter, amplitude and frequency of modulation, thermo-mechanical anisotropies, and Vadasz number on heat transport have been analyzed and depicted graphically. It is found that an increment in the value of thermo-rheological parameter results in the enhancement of heat transport in the system. Further, the study establishes that the heat transport can be controlled effectively by a mechanism that is external to the system.  相似文献   

6.
The effects of time-periodic boundary temperatures and internal heating on Nusselt number in the Bénard–Darcy convective problem has been considered. The amplitudes of temperature modulation at the lower and upper surfaces are considered to be very small. By performing a weakly non-linear stability analysis, the Nusselt number is obtained in terms of the amplitude of convection, which is governed by the non-autonomous Ginzburg–Landau equation, derived for the stationary mode of convection. The effects of internal Rayleigh number, amplitude and frequency of modulation, thermo-mechanical anisotropies, and Vadasz number on heat transport have been analyzed and depicted graphically. Increasing values of internal Rayleigh number results in the enhancement of heat transport in the system. Further, the study establishes that the heat transport can be controlled effectively by a mechanism that is external to the system.  相似文献   

7.
 The effect of time-periodic temperature/gravity modulation at the onset of convection in a Boussinesq fluid-saturated anisotropic porous medium is investigated by making a linear stability analysis. Brinkman flow model with effective viscosity larger than the viscosity of the fluid is considered to give a more general theoretical result. The perturbation method is applied for computing the critical Rayleigh and wave numbers for small amplitude temperature/gravity modulation. The shift in the critical Rayleigh number is calculated as a function of frequency of the modulation, viscosity ratio, anisotropy parameter and porous parameter. We have shown that it is possible to advance or delay the onset of convection by time-periodic modulation of the wall temperature and to advance convection by gravity modulation. It is also shown that the small anisotropy parameter has a strong influence on the stability of the system. The effect of viscosity ratio, anisotropy parameter, the porous parameter and the Prandtl number is discussed. Received on 28 July 2000 / Published online: 29 November 2001  相似文献   

8.
A non-autonomous complex Ginzburg-Landau equation (CGLE) for the finite amplitude of convection is derived, and a method is presented here to determine the amplitude of this convection with a weakly nonlinear thermal instability for an oscillatory mode under throughflow and gravity modulation. Only infinitesimal disturbances are considered. The disturbances in velocity, temperature, and solutal fields are treated by a perturbation expansion in powers of the amplitude of the applied gravity field. Throughflow can stabilize or destabilize the system for stress free and isothermal boundary conditions. The Nusselt and Sherwood numbers are obtained numerically to present the results of heat and mass transfer. It is found that throughflow and gravity modulation can be used alternately to heat and mass transfer. Further, oscillatory flow, rather than stationary flow, enhances heat and mass transfer.  相似文献   

9.
The effect of internal heat source on convection in a layer of fluid in a porous medium was analyzed using linear and nonlinear analysis, and boundaries are assumed to be stress-free and isothermal. Normal mode technique is used for linear analysis, and energy method is used for nonlinear stability analysis. The presence of heat generation leads to the possibility of the existence of a subcritical instability. Effects of increase of Darcy–Brinkman number and internal heat parameter on critical Rayleigh numbers were analyzed numerically using Chebyshev pseudospectral method.  相似文献   

10.
A two region conduction-controlled rewetting model of hot vertical surfaces with internal heat generation and boundary heat flux subjected to constant but different heat transfer coefficient in both wet and dry region is solved by the Heat Balance Integral Method (HBIM). The HBIM yields the temperature field and quench front temperature as a function of various model parameters such as Peclet number, Biot number and internal heat source parameter of the hot surface. Further, the critical (dry out) internal heat source parameter is obtained by setting Peclet number equal to zero, which yields the minimum internal heat source parameter to prevent the hot surface from being rewetted. Using this method, it has been possible to derive a unified relationship for a two-dimensional slab and tube with both internal heat generation and boundary heat flux. The solutions are found to be in good agreement with other analytical results reported in literature.  相似文献   

11.
A study of heat transport in Rayleigh–Bénard convection in viscoelastic liquids with/without gravity modulation is made using a most minimal representation of Fourier series and a representation with higher modes. The Oldroyd-B constitutive relation is considered. The resulting non-autonomous Lorenz model (generalized Khayat–Lorenz model of four modes and seven modes) is solved numerically using the adaptive-grid Runge–Kutta–Fehlberg45 method to quantify the heat transport. The effect of gravity modulation is shown to be stabilizing there by leading to a situation of reduced heat transfer. The Deborah number is shown to have an antagonistic influence on convection compared to the stabilizing effect of modulation amplitude and elastic ratio. The results in respect of Maxwell, Rivlin–Ericksen and Newtonian liquids are obtained as particular cases of the present study. A transformation of the momentum equations illustrates the equivalence of present approach and the one due to Khayat that uses normal stresses explicitly.  相似文献   

12.
13.
In this article, linear and nonlinear thermal instability in a rotating anisotropic porous layer with heat source has been investigated. The extended Darcy model, which includes the time derivative and Coriolis term has been employed in the momentum equation. The linear theory has been performed by using normal mode technique, while nonlinear analysis is based on minimal representation of the truncated Fourier series having only two terms. The criteria for both stationary and oscillatory convection is derived analytically. The rotation inhibits the onset of convection in both stationary and oscillatory modes. Effects of parameters on critical Rayleigh number has also been investigated. A weak nonlinear analysis based on the truncated representation of Fourier series method has been used to find the Nusselt number. The transient behavior of the Nusselt number has also been investigated by solving the finite amplitude equations using a numerical method. Steady and unsteady streamlines, and isotherms have been drawn to determine the nature of flow pattern. The results obtained during the analysis have been presented graphically.  相似文献   

14.
The effect of thermal/gravity modulation on the onset of convection in a Maxwell fluid saturated porous layer is investigated by a linear stability analysis. Modified Darcy–Maxwell model is used to describe the fluid motion. The regular perturbation method based on the small amplitude of modulation is employed to compute the critical Rayleigh number and the corresponding wavenumber. The stability of the system characterized by a correction Rayleigh number is calculated as a function of the viscoelastic parameter, Darcy–Prandtl number, normalized porosity, and the frequency of modulation. It is found that the low frequency symmetric thermal modulation is destabilizing while moderate and high frequency symmetric modulation is always stabilizing. The asymmetric modulation and lower wall temperature modulations are, in general, stabilizing while the system becomes unstable for large values of Darcy–Prandtl number and for small frequencies. It is shown that in general the gravity modulation produces a stabilizing effect on the onset of convection for moderate and high frequency. The small frequency gravity modulation is found to have destabilizing effect on the stability of the system.  相似文献   

15.
The present paper deals with the study of heat transfer characteristics in the laminar boundary layer flow of an incompressible viscous fluid over an unsteady stretching sheet which is placed in a porous medium in the presence of viscous dissipation and internal absorption or generation. Similarity transformations are used to convert the governing time dependent nonlinear boundary layer equations into a system of non-linear ordinary differential equations containing Prandtl number, Eckert number, heat source/sink parameter, porous parameter and unsteadiness parameter with appropriate boundary conditions. These equations are solved numerically by applying shooting method using Runge-Kutta-Fehlberg method. Comparison of numerical results is made with the earlier published results under limiting cases. The effects of the parameters which determine the velocity and temperature fields are discussed in detail.  相似文献   

16.
The onset of double diffusive convection in a viscoelastic fluid layer is studied using a linear and a weak nonlinear stability analyses. The onset criterion for stationary, oscillatory and finite amplitude convection is derived analytically. There is a competition between the processes of thermal diffusion, solute diffusion and viscoelasticity that causes the convection to set in through oscillatory mode rather than stationary. The effect of Deborah number, retardation parameter, solutal Rayleigh number, Prandtl number, Lewis number on the stability of the system is investigated. It is shown that the critical frequency increases with Deborah number and solutal Rayleigh number while it decreases with retardation parameter and Lewis number. The nonlinear theory based on the truncated representation of Fourier series method is used to find the heat and mass transfers. The transient behaviour of the Nusselt number and Sherwood number is investigated by solving the finite amplitude equations using Runge-Kutta method. The effect of viscoelastic parameters on heat and mass transfer is brought out.  相似文献   

17.
The effects of non-uniform heat generation/absorption and viscous dissipation on heat transfer of a non-Newtonian power-law fluid on a non-linearly stretching surface have been examined. The governing nonlinear partial differential equations describing the problem are transformed to a system of non-linear ordinary differential equations by using suitable similarity transformation. The transformed system of ordinary differential equations is solved numerically using fourth order Runge-Kutta method with the shooting technique. Graphical solutions for the dimensionless temperature are presented and discussed for various values of the power-law index parameter, the Prandtl number, the heat generation/absorption parameter and the Eckert number. The results show that the local Nusselt number is reduced with increasing the Eckert number or the heat generation parameter, whereas the heat absorption parameter has the effect of enhancing the local Nusselt number.  相似文献   

18.
The effects of temperature-dependent viscosity, gravity modulation and thermo-mechanical anisotropies on heat transport in a low-porosity medium are studied using the Ginzburg–Landau model. The effect of gravity modulation is to decrease the Nusselt number, Nu and variable viscosity leads to increase in Nu. The thermo-mechanical anisotropies have opposite effect on Nu with thermal anisotropy decreasing the heat transport.  相似文献   

19.
The effect of vertical vibrations on the convection in a rotating planar fluid layer heated from below was studied. In this case a modulation parameter, the acceleration due to gravity, appears in the problem. The modulation of the parameter may have a significant effect on the onset of convective instability. Parameter modulation in nonrotating layers has been investigated in earlier work [1–3]. The presence of rotation significantly increases the complexity of the mathematical problem, introducing an additional dependence of the solution on the Taylor number Ta and the Prandtl number Pr. Furthermore, an oscillatory convection regime can occur at the stability limit in rotating fluids with Pr < 1. Parameter modulation in the rotating fluid may not only lead to a change in the stability limit and critical wavelength but also to a change in the eigenfrequency of the oscillatory convection. Rauscher and Kelly [4] examined the effect of parameter modulation on the convective stability of a rotating fluid only for the particular case of a sinusoidal variation in the temperature gradient with a small amplitude for Pr = 1, i.e., the effect of modulation was studied on only a steady convection regime.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 12–22, July–August, 1984.  相似文献   

20.
The double diffusive convection in a horizontal couple stress fluid saturated anisotropic porous layer, which is heated and salted from below, is studied analytically. The modified Darcy equation that includes the time derivative term is used to model the momentum equation. The critical Rayleigh number, wavenumber for stationary and oscillatory modes, and frequency of oscillations are obtained analytically using linear theory. The effect of anisotropy parameter, solute Rayleigh number, Lewis number, couple stress parameter, and Vadasz number on the stationary, oscillatory, and finite amplitude convection is shown graphically. It is found that the thermal anisotropy parameter, couple stress parameter, and solute Rayleigh number have stabilizing effect on the stationary, oscillatory, and finite amplitude convection. The mechanical anisotropy parameter has destabilizing effect on stationary, oscillatory, and finite amplitude convection. The Lewis number has stabilizing effect in the case of stationary and finite amplitude modes, with dual effect in the case of oscillatory convection. Vadasz number advances the onset of oscillatory convection. The heat and mass transfer decrease with an increase in the values of couple stress parameter, while both increase with an increase in the value of solute Rayleigh number and mechanical anisotropy parameter. The thermal anisotropy parameter and Lewis number have contrasting effect on the heat mass transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号