首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on thermodynamic considerations, we derive a set of equations relating the seepage velocities of the fluid components in immiscible and incompressible two-phase flow in porous media. They necessitate the introduction of a new velocity function, the co-moving velocity. This velocity function is a characteristic of the porous medium. Together with a constitutive relation between the velocities and the driving forces, such as the pressure gradient, these equations form a closed set. We solve four versions of the capillary tube model analytically using this theory. We test the theory numerically on a network model.  相似文献   

2.
We study the evolution of the water–oil front for two-phase, immiscible flow in heterogeneous porous media. Our analysis takes into account the viscous coupling between the pressure field and the saturation map. Although most of previously published stochastic homogenization approaches for upscaling two-phase flow in heterogeneous porous media neglect this viscous coupling, we show that it plays a crucial role on the dynamics of the front. In particular, when the mobility ratio is favorable, the viscous coupling induces a transverse flux that stabilizes the water–oil front, which follows a stationary behavior, at least in a statistical sense. Calculations are based on a double perturbation expansion of equations at first order: the local velocity fluctuation is defined as the sum of a viscous term related to perturbations of the saturation map, on one hand, plus the perturbation induced by the heterogeneity of the permeability field with a base-state saturation map, on the other hand. In this first paper, we focus on flows in stratified reservoirs, with stratification parallel to the mean flow. Our results allow to predict the evolution of large Fourier mode of the front, and the emergence of a stationary front, for favorable mobility ratios. Numerical experiments confirm our predictions. Our approach is applied to downscaling. Extension of our theory to isotropic media is presented in the companion paper.  相似文献   

3.
4.
We study the evolution of the water–oil front for two-phase, immiscible flow in heterogeneous porous media. Our analysis takes into account the viscous coupling between the pressure field and the saturation map. Although most of previously published stochastic homogenization approaches for upscaling two-phase flow in heterogeneous porous media neglect this viscous coupling, we show that it plays a crucial role in the dynamics of the front. In particular, when the mobility ratio is favorable, it induces a transverse flux that stabilizes the water–oil front, which follows a stationary behavior, at least in a statistical sense. Calculations are based on a double perturbation expansion of equations at first order: the local velocity fluctuation is defined as the sum of a viscous term related to perturbations of the saturation map, on one hand, plus the perturbation induced by the heterogeneity of the permeability field with a base-state saturation map, on the other hand. In this companion paper, we focus on flows in isotropic media. Our results predict the dynamics of the water–oil front for favorable mobility ratios. We show that the statistics of the front reach a stationary limit, as a function of the geostatistics of the permeability field and of the mobility ratio evaluated across the front. Results of numerical experiments and Monte-Carlo analysis confirm our predictions.  相似文献   

5.
A new formulation is presented for the modeling of immiscible compressible two-phase flow in porous media taking into account gravity, capillary effects, and heterogeneity. The formulation is intended for the numerical simulation of multidimensional flows and is fully equivalent to the original equations, contrary to the one introduced in Chavent and Jaffré (Mathematical Models and Finite Elements for Reservoir Simulation, 1986). The main feature of this formulation is the introduction of a global pressure. The resulting equations are written in a fractional flow formulation and lead to a coupled system which consists of a nonlinear parabolic (the global pressure equation) and a nonlinear diffusion–convection one (the saturation equation) which can be efficiently solved numerically. A finite volume method is used to solve the global pressure equation and the saturation equation for the water and gas phase in the context of gas migration through engineered and geological barriers for a deep repository for radioactive waste. Numerical results for the one-dimensional problem are presented. The accuracy of the fully equivalent fractional flow model is demonstrated through comparison with the simplified model already developed in Chavent and Jaffré (Mathematical Models and Finite Elements for Reservoir Simulation, 1986).  相似文献   

6.
We use an approach based on invasion percolation in a gradient (IPG) to describe the displacement patterns that develop when a fluid spreads on an impermeable boundary in a porous medium under the influence of gravity (buoyancy) forces in a drainage process. The approach is intended to simulate applications, such as the spreading of a DNAPL in the saturated zone and of a NAPL in the vadose zone on top of an impermeable layer, or the classical problems of gravity underruning and gravity override in reservoir engineering. As gravity acts in a direction transverse to the main displacement direction, a novel form of IPG develops. We study numerically the resulting patterns for a combination of transverse and parallel Bond numbers and interpret the results using the concepts of gradient percolation. A physical interpretation in terms of the capillary number, the viscosity ratio and the gravity Bond number is also provided. In particular, we consider the scaling of the thickness of the spreading gravity tongue, for the cases of gravitydominated and viscousunstable displacements, and of the propagating front in the case of stabilized displacement at relatively high rates. It is found that the patterns have percolation (namely fractallike) characteristics, which cannot be captured by conventional continuum equations. These characteristics will affect, for example, mass transfer and must be considered in the design of remediation processes.  相似文献   

7.
Yield-stress is a problematic and controversial non-Newtonian flow phenomenon. In this article, we investigate the flow of yield-stress substances through porous media within the framework of pore-scale network modelling. We also investigate the validity of the Minimum Threshold Path (MTP) algorithms to predict the pressure yield point of a network depicting random or regular porous media. Percolation theory as a basis for predicting the yield point of a network is briefly presented and assessed. In the course of this study, a yield-stress flow simulation model alongside several numerical algorithms related to yield-stress in porous media were developed, implemented and assessed. The general conclusion is that modelling the flow of yield-stress fluids in porous media is too difficult and problematic. More fundamental modelling strategies are required to tackle this problem in the future.  相似文献   

8.
A porous medium with a broad pore-size distribution is described on the basis of the Multiscale Percolation System concept. The representative structure is the superposition of several constitutive elementary networks, of which mesh sizes are proportional to the diameter of the class of pores considered. To account for the contribution of each class to the connection of the medium, a recurrent building process, involving rescaling and superposition, is defined. This process leads to an equivalent monoscale network, involving elements representative of the various classes. Mercury intrusion at increasing pressure into a finite-size sample of this equivalent network is modelled. The inverse problem is solved, leading to the identification of the representative multiscale structure of a given material from the experimental intrusion curve.  相似文献   

9.
Recent experimental work has shown that the pore-scale flow mechanism during steady-state two-phase flow in porous media is ganglion dynamics (GD) over a broad and practically significant range of the system parameters. This observation suggests that our conception and theoretical treatment of fractional flow in porous media need careful reconsideration. Here is proposed a mechanistic model of steady-state two-phase flow in those cases where the dominant flow regime is ganglion dynamics. The approach is based on the ganglion population balance equations in combination with a microflow network simulator. The fundamental information on the cooperative flow behavior of the two fluids at the scale of a few hundred pores is expressed through the system factors, which are functions of the system parameters and are calculated using the simulator. These system factors are utilized by the population balance equations to predict the macroscopic behavior of the process. The dependence of the conventional relative permeability coefficients not only on the wetting fluid saturation Swbut also on the capillary number, Ca, the viscosity ratio the wettability (0 a, 0 r), the coalescence factor, Co, as well as the porous medium geometry and topology is explained and predicted on a mechanistic basis. Sample calculations have been performed for steady-state fully developed (SSFD) and steady-state nonfully developed (SSnonFD) flow conditions. The number distributions of the moving and the stranded ganglia, the mean ganglion size, the fraction of the nonwetting fluid in the form of mobile ganglia, the ratio of the conventional relative permeability coefficients and the fractional flows are studied as functions of the system parameters and are correlated with the flow phenomena at pore level and the system factors.  相似文献   

10.
Relative permeability functions for immiscible displacements in porous media show a wide range of profiles. Although, this behavior is well known, its impact on the stability of the displacement process is unexplored. Our analysis clearly demonstrates for the first time that the viscous instability characteristics of two-phase flows are governed not only by their end point values, but are strongly dependent on the actual profile of relative permeability functions. Linear stability analysis predicts the capacity of the flow to develop large scale fingers which can result in substantial bypassing of the resident fluid. It is observed that relative permeability functions attributed to drainage processes yield a more unstable displacement as compared to functions related to imbibition processes. Moreover, instability is observed to increase for those relative permeability functions which result from increased wettability of the wetting fluid. High accuracy numerical simulations show agreement with these predictions and demonstrate how large amplitude viscous fingers result in significant bypassing for certain relative permeability functions. In the nonlinear regime, the finger amplitude grows at a rate ∝ t1/2 initially, drops to t1/4 at a later time and finally grows ∝ t. The basic mechanisms of finger interaction, however, are not substantially influenced by relative permeability functions.  相似文献   

11.
The problem of determining the equilibrium configuration of a plane, doubly connected ice-rock body formed about a system of two freezing columns traversing a flow through a porous medium is asymptotically analyzed in the limit of small Péclet numbers. Two terms of the asymptotic expansion are retained. It is shown that in this approximation the criterion of joining of the doubly connected body coincides with the criterion of non-disjoining of the simply connected body. However, the solution structure is such that taking the third asymptotic term into account can lead to a second solution when the ice-rock body is close to joining. This means that the size of the joining-disjoining hysteresis loop is of at least the second order in the Péclet number.  相似文献   

12.
In this article, we describe horizontal groundwater flow due to a uniform flow at infinity around a cylindrical or elliptical inhomogeneity, where the permeability inside the inhomogeneity is anisotropic and different from the isotropic domain outside the inhomogeneity. The orientation of the uniform flow with respect to the orientation of the ellipse is arbitrary as well as the orientation of the anisotropy inside the ellipse. We derive an expression for the ratio of the flow through the ellipse with respect to the flow in the homogeneous case.  相似文献   

13.
A number of environmental and petroleum engineering applications involve the coexistence of three non-miscible fluids. In this work, basic constitutive relations and computational schemes are developed in order to simulate fluid injection and imbibition processes in a deformable rock through the finite element method. For this purpose, the following ingredients are worked out: (i) simple, but general formulas for the effective saturations; (ii) constitutive expressions for the relative permeabilities of water, oil and gas in terms of effective saturations; and (iii) constitutive capillary pressure relationships. These ingredients are introduced in a domestic finite element code where the primary variables are the solid displacement vector and the three fluid pressures. Given the abundance of experimental data in the petroleum engineering field, the whole framework is firstly tested by simulating gas injection into a rock core sample initially saturated by water and oil. Sensitivity analyses are performed upon varying key constitutive, loading and numerical parameters, to assess the physical and computational outputs of the proposed framework. Particular attention is given to the influence on the model predictions of several expressions defining relative permeabilities. Simulations of water-alternated-gas injection and of counter-current water imbibition tests are also performed, to establish the reliability of the proposed constitutive and computational framework.  相似文献   

14.
We present an experimental and numerical study of immiscible two-phase flow of Newtonian fluids in three-dimensional (3D) porous media to find the relationship between the volumetric flow rate (Q) and the total pressure difference (\(\Delta P\)) in the steady state. We show that in the regime where capillary forces compete with the viscous forces, the distribution of capillary barriers at the interfaces effectively creates a yield threshold (\(P_t\)), making the fluids reminiscent of a Bingham viscoplastic fluid in the porous medium. In this regime, Q depends quadratically on an excess pressure drop (\(\Delta P-P_t\)). While increasing the flow rate, there is a transition, beyond which the overall flow is Newtonian and the relationship is linear. In our experiments, we build a model porous medium using a column of glass beads transporting two fluids, deionized water and air. For the numerical study, reconstructed 3D pore networks from real core samples are considered and the transport of wetting and non-wetting fluids through the network is modeled by tracking the fluid interfaces with time. We find agreement between our numerical and experimental results. Our results match with the mean-field results reported earlier.  相似文献   

15.
Transport in Porous Media - We present a review of pore-scale simulations of immiscible fluid transport with focus on two of the most popular approaches: lattice Boltzmann modeling for direct...  相似文献   

16.
Wang  Le  Liu  Yongzhong  Chu  Khim 《Transport in Porous Media》2012,93(3):721-735

For two-phase flows of immiscible displacement processes in porous media, we proposed a simplified model to capture the interfacial fronts, which is given by explicit expressions and satisfies the continuity conditions of pressure and normal velocity across the interface. A new similarity solution for the interfacial evolution in the rectangular coordinate system was derived by postulating a first-order approximation of the velocity distribution in the region that the two-phase fluids co-exist. The interfacial evolution equation can be explicitly expressed as a linear function, where the slope of the interfacial equation is simply related to the mobility ratio of two-phase fluids in porous media. The application of the proposed solutions to predictions of interfacial evolutions in carbon dioxide injected into saline aquifers was illustrated under different mobility ratios and operational parameters. For the purpose of comparison, the numerical solutions obtained by level set method and the similarity solutions based on the Dupuit assumptions were presented. The results show that the proposed solution can give a better approximation of interfacial evolution than the currently available similarity solutions, especially in the situation that the mobility ratio is large. The proposed approximate solutions can provide physical insight into the interfacial phenomenon and be readily used for rapidly screening carbon dioxide storage capacity in subsurface formations and monitoring the migration of carbon dioxide plume.

  相似文献   

17.
In the present paper we consider a multicomponent multiphase isothermal flow in porous media with mass exchange between phases. The system of equations of multiphase multicomponent flow has discontinuous solutions, but is not hyperbolic, except some particular cases. For this general, non-hyperbolic system, we propose a free energy condition to select unique physically admissible discontinuous solutions. We also develop a geometrical procedure which provides a tool to analyze the free energy condition. For a two-component mixture, analytical formulae are obtained for the allowed discontinuities.  相似文献   

18.
Condensation and flow experiments were conducted at subsurface conditions in a glass micromodel using reservoir fluids with and without the hydrogen sulfide component. It has been noted that the formation of the condensing phase as well as modes of condensate flow are similar for both fluids. Furthermore, an additional condensate transport mechanism, termed lamella flow, was observed with the sour fluid. It has been concluded that core flow experiments conducted with sweet reservoir fluid should reproduce the flow of sour fluid to a large extent.  相似文献   

19.
A least-squares mixed formulation is developed for simulation of two-phase flow in porous media. Such problems arise in petroleum applications and ground-water flow. An adaptive strategy based on the element residual as an error indicator is developed in conjunction with unstructured remeshing and tested for the two-phase flow of oil and water. An element-by-element conjugate-gradient scheme (EBE-CG) is compared to a band solution algorithm.  相似文献   

20.
Zhang  Jingtao  Zhang  Haipeng  Lee  Donghee  Ryu  Sangjin  Kim  Seunghee 《Transport in Porous Media》2020,131(2):449-472
Transport in Porous Media - Compressed air energy storage (CAES) technology has been re-emerging as a viable energy storage option to address challenges coming from the mismatch between renewable...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号