首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we solve instances of the multiobjective multiconstraint (or multidimensional) knapsack problem (MOMCKP) from the literature, with three objective functions and three constraints. We use exact as well as approximate algorithms. The exact algorithm is a properly modified version of the multicriteria branch and bound (MCBB) algorithm, which is further customized by suitable heuristics. Three branching heuristics and a more general purpose composite branching and construction heuristic are devised. Comparison is made to the published results from another exact algorithm, the adaptive ε-constraint method [Laumanns, M., Thiele, L., Zitzler, E., 2006. An efficient, adaptive parameter variation scheme for Metaheuristics based on the epsilon-constraint method. European Journal of Operational Research 169, 932–942], using the same data sets. Furthermore, the same problems are solved using standard multiobjective evolutionary algorithms (MOEA), namely, the SPEA2 and the NSGAII. The results from the exact case show that the branching heuristics greatly improve the performance of the MCBB algorithm, which becomes faster than the adaptive ε -constraint. Regarding the performance of the MOEA algorithms in the specific problems, SPEA2 outperforms NSGAII in the degree of approximation of the Pareto front, as measured by the coverage metric (especially for the largest instance).  相似文献   

2.
In k-means clustering we are given a set of n data points in d-dimensional space and an integer k, and the problem is to determine a set of k points in  , called centers, to minimize the mean squared distance from each data point to its nearest center. No exact polynomial-time algorithms are known for this problem. Although asymptotically efficient approximation algorithms exist, these algorithms are not practical due to the very high constant factors involved. There are many heuristics that are used in practice, but we know of no bounds on their performance.

We consider the question of whether there exists a simple and practical approximation algorithm for k-means clustering. We present a local improvement heuristic based on swapping centers in and out. We prove that this yields a (9+)-approximation algorithm. We present an example showing that any approach based on performing a fixed number of swaps achieves an approximation factor of at least (9−) in all sufficiently high dimensions. Thus, our approximation factor is almost tight for algorithms based on performing a fixed number of swaps. To establish the practical value of the heuristic, we present an empirical study that shows that, when combined with Lloyd's algorithm, this heuristic performs quite well in practice.  相似文献   


3.
The measure and conquer approach has proven to be a powerful tool to analyse exact algorithms for combinatorial problems like Dominating Set and Independent Set. This approach is used in this paper to obtain a faster exact algorithm for Dominating Set. We obtain this algorithm by considering a series of branch and reduce algorithms. This series is the result of an iterative process in which a mathematical analysis of an algorithm in the series with measure and conquer results in a convex or quasiconvex programming problem. The solution, by means of a computer, to this problem not only gives a bound on the running time of the algorithm, but can also give an indication on where to look for a new reduction rule, often giving a new, possibly faster algorithm. As a result, we obtain an O(1.4969n) time and polynomial space algorithm.  相似文献   

4.
In this paper we present a new, query based approach for approximating polygonal chains in the plane. We give a few results based on this approach, some of more general interest, and propose a greedy heuristic to speed up the computation. Our algorithms are simple, based on standard geometric operations, and thus suitable for efficient implementation. We also show that the query based approach can be used to obtain a subquadratic time exact algorithm with infinite beam criterion and Euclidean distance metric if some condition on the input path holds. Although in a special case, this is the first subquadratic result for path approximation with Euclidean distance metric.  相似文献   

5.
Genetic algorithms are stochastic search algorithms that have been applied to optimization problems. In this paper we analyze the run-time complexity of a genetic algorithm when we are interested in one of a set of distinguished solutions. One such case occurs when multiple optima exist. We define the worst case scenario and derive a probabilistic worst case bound on the number of iterations required to find one of these multiple solutions of interest.  相似文献   

6.
Strong convergence theorem of viscosity approximation methods for nonexpansive mapping have been studied. We also know that CQ algorithm for solving the split feasibility problem (SFP) has a weak convergence result. In this paper, we use viscosity approximation methods and some related knowledge to solve a class of generalized SFP’s with monotone variational inequalities in Hilbert space. We propose some iterative algorithms based on viscosity approximation methods and get strong convergence theorems. As applications, we can use algorithms we proposed for solving split variational inequality problems (SVIP), split constrained convex minimization problems and some related problems in Hilbert space.  相似文献   

7.
In this paper we address a class of heterogeneous multi-vehicle task assignment and routing problems. We propose two distributed algorithms based on gossip communication: the first algorithm is based on a local exact optimization and the second is based on a local approximate greedy heuristic. We consider the case where a set of heterogeneous tasks arbitrarily distributed in a plane has to be serviced by a set of mobile robots, each with a given movement speed and task execution speed. Our goal is to minimize the maximum execution time of robots.  相似文献   

8.
We propose exact algorithms for the two-dimensional strip packing problem (2SP) with and without 90° rotations. We first focus on the perfect packing problem (PP), which is a special case of 2SP, wherein all given rectangles are required to be packed without wasted space, and design branch-and-bound algorithms introducing several branching rules and bounding operations. A combination of these rules yields an algorithm that is especially efficient for feasible instances of PP. We then propose several methods of applying the PP algorithms to 2SP. Our algorithms succeed in efficiently solving benchmark instances of PP with up to 500 rectangles and those of 2SP with up to 200 rectangles. They are often faster than existing exact algorithms specially tailored for problems without rotations.  相似文献   

9.
In this work, we propose a proximal algorithm for unconstrained optimization on the cone of symmetric semidefinite positive matrices. It appears to be the first in the proximal class on the set of methods that convert a Symmetric Definite Positive Optimization in Nonlinear Optimization. It replaces the main iteration of the conceptual proximal point algorithm by a sequence of nonlinear programming problems on the cone of diagonal definite positive matrices that has the structure of the positive orthant of the Euclidian vector space. We are motivated by results of the classical proximal algorithm extended to Riemannian manifolds with nonpositive sectional curvature. An important example of such a manifold is the space of symmetric definite positive matrices, where the metrics is given by the Hessian of the standard barrier function −lndet(X). Observing the obvious fact that proximal algorithms do not depend on the geodesics, we apply those ideas to develop a proximal point algorithm for convex functions in this Riemannian metric.  相似文献   

10.
In this study, we consider the nadir points of multiobjective integer programming problems. We introduce new properties that restrict the possible locations of the nondominated points necessary for computing the nadir points. Based on these properties, we reduce the search space and propose an exact algorithm for finding the nadir point of multiobjective integer programming problems. We present an illustrative example on a three objective knapsack problem. We conduct computational experiments and compare the performances of two recent algorithms and the proposed algorithm.  相似文献   

11.
We study the randomized k-server problem on metric spaces consisting of widely separated subspaces. We give a method which extends existing algorithms to larger spaces with the growth rate of the competitive quotients being at most O(logk). This method yields o(k)-competitive algorithms solving the randomized k-server problem for some special underlying metric spaces, e.g. HSTs of “small” height (but unbounded degree). HSTs are important tools for probabilistic approximation of metric spaces.  相似文献   

12.
Two probabilistic hit-and-run algorithms are presented to detect nonredundant constraints in a full dimensional system of linear inequalities. The algorithms proceed by generating a random sequence of interior points whose limiting distribution is uniform, and by searching for a nonredundant constraint in the direction of a random vector from each point in the sequence. In the hypersphere directions algorithm the direction vector is drawn from a uniform distribution on a hypersphere. In the computationally superior coordinate directions algorithm a search is carried out along one of the coordinate vectors. The algorithms are terminated through the use of a Bayesian stopping rule. Computational experience with the algorithms and the stopping rule will be reported.  相似文献   

13.
Rollout Algorithms for Stochastic Scheduling Problems   总被引:8,自引:0,他引:8  
Stochastic scheduling problems are difficult stochastic control problems with combinatorial decision spaces. In this paper we focus on a class of stochastic scheduling problems, the quiz problem and its variations. We discuss the use of heuristics for their solution, and we propose rollout algorithms based on these heuristics which approximate the stochastic dynamic programming algorithm. We show how the rollout algorithms can be implemented efficiently, with considerable savings in computation over optimal algorithms. We delineate circumstances under which the rollout algorithms are guaranteed to perform better than the heuristics on which they are based. We also show computational results which suggest that the performance of the rollout policies is near-optimal, and is substantially better than the performance of their underlying heuristics.  相似文献   

14.
邵新慧  祁猛 《计算数学》2022,44(2):206-216
多重线性系统在当今的工程计算和数据挖掘等领域有很多实际应用,许多问题可以转化为多重线性系统求解问题.在本文中,我们首先提出了一种新的迭代算法来求解系数张量为M-张量的多重线性系统,在此基础上又提出了一种新的改进算法,并对两种算法的收敛性进行了分析.数值算例的结果表明,本文提出的两种算法是有效的并且改进算法的迭代时间更少.  相似文献   

15.
The Colombian coffee supply network, managed by the Federación Nacional de Cafeteros de Colombia (Colombian National Coffee-Growers Federation), requires slimming down operational costs while continuing to provide a high level of service in terms of coverage to its affiliated coffee growers. We model this problem as a biobjective (cost-coverage) uncapacitated facility location problem (BOUFLP). We designed and implemented three different algorithms for the BOUFLP that are able to obtain a good approximation of the Pareto frontier. We designed an algorithm based on the Nondominated Sorting Genetic Algorithm; an algorithm based on the Pareto Archive Evolution Strategy; and an algorithm based on mathematical programming. We developed a random problem generator for testing and comparison using as reference the Colombian coffee supply network with 29 depots and 47 purchasing centers. We compared the algorithms based on the quality of the approximation to the Pareto frontier using a nondominated space metric inspired on Zitzler and Thiele's. We used the mathematical programming-based algorithm to identify unique tradeoff opportunities for the reconfiguration of the Colombian coffee supply network. Finally, we illustrate an extension of the mathematical programming-based algorithm to perform scenario analysis for a set of uncapacitated location problems found in the literature.  相似文献   

16.
This paper deals with a single allocation problem in hub-and-spoke networks. We present a simple deterministic 3-approximation algorithm and randomized 2-approximation algorithm based on a linear relaxation problem and a randomized rounding procedure. We handle the case where the number of hubs is three, which is known to be NP-hard, and present a (5/4)-approximation algorithm.The single allocation problem includes a special class of the metric labeling problem, defined by introducing an assumption that both objects and labels are embedded in a common metric space. Under this assumption, we can apply our algorithms to the metric labeling problem without losing theoretical approximation ratios. As a byproduct, we also obtain a (4/3)-approximation algorithm for an ordinary metric labeling problem with three labels.  相似文献   

17.
In this paper we prove that special requirements to Yang-Mills equations on a 4-dimensional conformally connected manifold allow one to reduce them to a system of Einstein equations and additional ones that bind components of the energy-impulse tensor. We propose an algorithm that gives conditions for the embedding of the metric of the gravitational field into a special (uncharged) Yang-Mills conformally connected manifold. As an application of the algorithm, we prove that the metric of any Einstein space and the Robertson-Walker metric are embeddable into the specified manifold.  相似文献   

18.
Over the last few decades several methods have been proposed for handling functional constraints while solving optimization problems using evolutionary algorithms (EAs). However, the presence of equality constraints makes the feasible space very small compared to the entire search space. As a consequence, the handling of equality constraints has long been a difficult issue for evolutionary optimization methods. This paper presents a Hybrid Evolutionary Algorithm (HEA) for solving optimization problems with both equality and inequality constraints. In HEA, we propose a new local search technique with special emphasis on equality constraints. The basic concept of the new technique is to reach a point on the equality constraint from the current position of an individual solution, and then explore on the constraint landscape. We believe this new concept will influence the future research direction for constrained optimization using population based algorithms. The proposed algorithm is tested on a set of standard benchmark problems. The results show that the proposed technique works very well on those benchmark problems.  相似文献   

19.
Rutishauser, Gragg and Harrod and finally H.Y. Zha used the same class of chasing algorithms for transforming arrowhead matrices to tridiagonal form. Using a graphical theoretical approach, we propose a new chasing algorithm. Although this algorithm has the same sequential computational complexity and backward error properties as the old algorithms, it is better suited for a pipelined approach. The parallel algorithm for this new chasing method is described, with performance results on the Paragon and nCUBE. Comparison results between the old and the new algorithms are also presented.

  相似文献   


20.
《Optimization》2012,61(9):1289-1318
We propose a variable metric forward–backward splitting algorithm and prove its convergence in real Hilbert spaces. We then use this framework to derive primal-dual splitting algorithms for solving various classes of monotone inclusions in duality. Some of these algorithms are new even when specialized to the fixed metric case. Various applications are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号