首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optical properties of Fe-doped silica films on Si were investigated by ellipsometric technique in the region 1-5 eV. Samples were produced by sol-gel method. Precursors were prepared by mixing tetraethoxysilane (TEOS) solution in ethanol and water with aqueous solution of Fe-chloride or Fe-acetate. The coating solution was deposited on Si substrates by spin on technique. The size of Fe-containing nanometric-sized particles depended on technology and varied from 20 to 100 nm. Optical response of complex hybrid samples SiO2:Fe/Si was interpreted in a multi-layer model. In the inverse problem, the Maxwell equations were solved by transfer matrix technique. Dielectric function of Fe-doped silica layers was calculated in the model of effective media. Analysis of optical data has shown that various Fe-oxides formed. Experimental data for films obtained from precursors with Fe-acetate and annealed in hydrogen were well described by the model calculations taking into account a small contribution 1-5% of metal Fe imbedded in silica. The Fe/Fe-O contribution to optical response increased for samples grown from FeCl3-precursor. Ellipsometric data for Fe-doped silica films on Si were interpreted taking into account the structural AFM studies as well as the results of magnetic measurements.  相似文献   

2.
We experimentally investigate the antireflective properties of various silicon (Si) subwavelength grating (SWG) structures using closely-packed silica nanospheres monolayers with different sizes as etch masks and a subsequent inductively coupled plasma (ICP) etching, together with theoretical calculations based on a rigorous coupled wave analysis method. The geometric structure of Si SWGs is optimized by changing the size of nanospheres and ICP etching parameters. The antireflective properties depend strongly on the period, height, and shape of the hexagonally ordered SWG structures, especially correlated with ICP etching parameters. For an optimized Si SWG structure with a rounded cone shape, the reflectance is significantly reduced, indicating a low reflectance of <4.4% over a wide wavelength region of 300–1100 nm. From theoretical analysis, the reflectance of rounded cone-shaped Si SWG structures is minimized with a period of ∼300–350 nm and heights of >750 nm, which is reasonably consistent with the experimental results. The angle-dependent antireflection characteristics are also discussed.  相似文献   

3.
The unique structure of a set of self-assembled porous silica materials was characterized through a combined small-angle scattering (CSAS) method using small- and ultra-small angle neutron scattering as well as small-angle X-ray scattering. The porous silica specimens investigated were prepared by a sol-gel method under the presence of alkylketene dimer (AKD) template particles and through calcination, which leads to the development of porous silica having a mass-fractal structure over length scales from ~ 100 nm to ~ 10 μm. Furthermore, the specimens posses a hierarchical structure, which consist of a fractal porous structure, and also contain primary silica particles less than 10 nm in size, which form a continuous silica matrix. To characterize these complex structures, observation over a broad range of length scales is indispensable. We propose a CSAS technique that serves this purpose well.  相似文献   

4.
A method to prepare a core–shell structure consisting of a Pt metal core coated with a silica shell (Pt(in)SiO2) is described herein. A silica shell was grown on poly(vinylpyrrolidone) (PVP)-stabilized Pt nanoparticles 2–3 nm in size through hydrolysis and condensation reactions of tetraethyl orthosilicate (TEOS) in a water/ethanol mixture with ammonia as a catalyst. This process requires precise control of the reaction conditions to avoid the formation of silica particles containing multiple Pt cores and core-free silica. The length of PVP molecules, water content, concentration of ammonia and Pt nanoparticles in solution were found to significantly influence the core–shell structure. By optimizing these parameters, it was possible to prepare core–shell particles each containing a single Pt nanoparticle with a silica layer coating approximately 10 nm thick.  相似文献   

5.
Study of GaN adsorption on the Si surface   总被引:1,自引:0,他引:1  
The adsorption energy, the band structures and DOS (density of states) of GaN on surface of Si(1 0 0) and Si(1 1 1) are calculated by the first-principle using plane-wave pseudo-potentials method based on the density functional theory in order to know the adsorption between the surface of Si and GaN. The calculation results show that GaN is easier adsorbed on the surface of Si(1 0 0) than the surface of Si(1 1 1) under the same experimental condition. There are strong charge distributions between N and Si atom. The bandgap of GaN on surface of Si(1 0 0) becomes a little narrower than that of pure GaN. On the other hand, GaN film is deposited on the surface of Si(1 0 0) by ECR-MOPECVD (electron cyclotron resonance-plasma enhanced chemical vapor deposition) at low temperature. For substrate of Si(1 1 1), no film is obtained under the same experimental condition.  相似文献   

6.
In this study, a new approach for the preparation of a fluorescent europium(III) complex-doped silica nanoparticles has been developed. The synthesis process involved the following steps: (1) preparing silica nanoparticles by water-in-oil microemulsion method, (2) dyeing the spherical silica particles by europium(III): naphtoyltrifluoroacetone (NTA):trioctylphosphineoxide (TOPO), (3) adsorbing polyvinylpyrrolidone (PVP) onto the core structure and growing silica on PVP surface. The as-prepared nanoparticles exhibited stronger emission intensity, higher photo- and chemical stability. Despite the fact that europium(III) complex was doped into the nanoparticles, its fluorescence properties such as a wide Stokes shift, a narrow emission peak, and long fluorescence lifetime, were retained. The nanoparticles are uniform in shape and size (50 ± 5 nm in diameter). This study could provide new avenue for the fabrication of Eu: NTA:TOPO-based nanoparticles, facilitating their application in bioassay issues.  相似文献   

7.
Obtaining small (<50 nm), monodispersed, well-separated, single iron oxide core–silica (SiO2) shell nanoparticles for biomedical applications is still a challenge. Preferably, they are synthesised by inverse microemulsion method. However, substantial amount of aggregated and multicore core–shell nanoparticles is the undesired outcome of the method. In this study, we report on the production of less than 50 nm overall size, monodispersed, free of necking, single core iron oxide–SiO2 shell nanoparticles with tuneable shell thickness by a carefully optimized inverse microemulsion method. The high degree of control over the process is achieved by understanding the mechanism of core–shell nanoparticles formation. By varying the reaction time and precursor concentration, the thickness of silica layer on the core nanoparticles can be finely adjusted from 5 to 13 nm. Residual reactions during the workup were inhibited by a combination of pH control with shock freezing and ultracentrifuging. These high-quality tuneable core–shell nanocomposite particles exhibit superparamagnetic character and sufficiently high magnetization with great potential for biomedical applications (e.g. MRI, cell separation and magnetically driven drug delivery systems) either as-prepared or by additional surface modification for improved biocompatibility.  相似文献   

8.
Au nanoparticles (NPs) with a size in the 2–12 nm range have been grown in silica by 2 MeV Au-ion implantation and a subsequent thermal annealing in air. The as-prepared Au NPs were irradiated with 10 MeV Si ions elongating some of them. From transmission electron microscopy in Z-contrast mode, we observed a narrow size distribution of the minor axis of the deformed NPs, which presents its higher frequency around 6–7 nm and have a saturation about 9 nm. This final result agrees well with the diameter of the track formed by Si ions of 10 MeV in silica, supporting the thermal spike model, which would explain the deformation of the NPs. In this model, the NP melts and creeps along the ion track. Our results show that the NP crystallization is in the fcc structure. On the other hand, a 200 keV electron irradiation provoked roundness on the previously elongated nanoparticles. This effect was observed in situ by high-resolution transmission electron microscopy, showing additionally that, during the roundness process, the fcc structure, as well as its crystalline orientation, remain unchanged. Thus, this study shows how Au NPs embedded in silica, within this size distribution, keep the fcc bulk structure under both ion and electron irradiations.  相似文献   

9.
《Solid State Ionics》2006,177(37-38):3297-3301
Two Si–Mn–C composites were obtained by sequentially ball milling the mixture of the silicon and manganese powders (atomic ratio of 3:5), followed by addition of 20 wt.% and 10 wt.% graphite, respectively. The phase structure and morphology of the composite were analyzed by X-ray diffraction (XRD) and scanning electromicroscopy (SEM). The results of XRD show that there is no new alloy phase in the composite obtained by mechanical ball milling. SEM micrographs confirm that the particle size of the Si–Mn–C composite is about 0.5–2.0 μm and the addition of graphite restrains the morphological change of active center (Si) during cycling. The Si–Mn particles are dispersed among the carbon matrix homogeneously, which ensures a good electrical contact between the active particles. Electrochemical tests show that the Si–Mn–C composite achieves better reversible capacity and cycleability. The Si–Mn–20 wt.% C composite electrode annealed at 200 °C for 2 h reveals an initial reversible capacity of 463 mAh·g 1 and retains 387 mAh·g 1 after 40 cycles.  相似文献   

10.
Gold-rich Au x Si1−x particles grown on Si(111)7 × 7 are studied by reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM). The diffraction patterns reveal that (1) at least two different crystal structures coexist on the substrate; (2) the most prominent data correspond to a rhombohedral or quasi closed-packed structure; and (3) the particles show formation of an unusual contact facet to the substrate. Complete crystal alignment of the particles to the substrate lattice is found with no hints of random orientation. The findings are compared to STM images in terms of their structure, orientation, and morphology.  相似文献   

11.
Molecular dynamics (MD) simulations of nanoindentation are carried out to investigate the phase transformations in Si with a spherical indenter. Since the phase transformation induced by deformation in micro-scale is closely related to the carrier mobility of the material, it has become a key issue to be investigated for the chips especially with smaller feature size. Up to now, however, it is not possible to carry out the nanoindentation experimentally in such a small feature. Consequently, molecular dynamic simulation on nanoindentation is resorted to and becomes a powerful tool to understand the detailed mechanisms of stress-induced phase transformation in nano-scale. In this study, the inter-atomic interaction of Si atoms is modeled by Tersoff's potential, while the interaction between Si atoms and diamond indenter atoms is modeled by Morse potential. It is found that the diamond cubic structure of Si in the indentation zone transforms into a phase with body-centred tetragonal structure (β-Si) just underneath the indenter during loading stage and then changes to amorphous after unloading. By using the technique of coordinate number the results reveal that indentation on the (0 0 1) surface exhibits significant phase transformation along the <1 1 0> direction. In addition, indentation on the (1 1 0) surface shows more significant internal slipping and spreading of phase transformation than on the (0 0 1) surface. Furthermore, during the indentation process phase transformations of Si are somewhat reversible. Parts of transformed phases that are distributed over the region of elastic deformation can be gradually recovered to original mono-crystal structure after unloading.  相似文献   

12.
Superhydrophobic polytetrafluoroethylene (Teflon®, DuPont) sub-micro and nanostructures were fabricated by the dipping method, based on anodization process in oxalic acid. The polymer sticking phenomenon during the replication creates the sub-microstructures on the negative polytetrafluoroethylene nanostructure replica. This process gives a hierarchical structure with nanostructures on sub-microstructures, which looks like the same structures as lotus leaf and enables commercialization. The diameter and the height of the replicated nano pillars were 40 nm and 40 μm respectively. The aspect ratio is approximately 1000. The fabricated surface has a semi-permanent superhydrophobicity, the apparent contact angle of the polytetrafluoroethylene sub-micro and nanostructures is about 160°, and the sliding angle is less than 1°.  相似文献   

13.
《Solid State Ionics》2006,177(26-32):2431-2435
We have synthesized and characterized a new family of proton conducting membranes based on cross-linked poly(vinyl alcohol), PVA, and functionalized silica filler. Glutaraldehyde, GLA, was used as the cross-linking agent in order to improve chemical and thermal stabilities. The functionalization of the silica particles is such that terminal –SO3H groups are formed during membrane preparation, thus possibly providing additional mobile protons. We find that the crystallinity of the PVA-based membranes is enhanced by the presence of the functionalized silica particles, whereas it is reduced by means of cross-linking. The thermal stability of the ternary system PVA:GLA:silica is improved due to the additive contribution of GLA and silica. The conductivity of membranes swelled in a sulfuric acid solution was found to be of the order of 10 1 S cm 1.  相似文献   

14.
Synchrotron radiation based photoemission spectroscopy (SRPES) and low energy electron diffraction (LEED) are used to study the interaction between Ag atoms and the Si(1 1 1)1 × 1–H surface. At an Ag coverage of 0.063 monolayers (ML) on the Si(1 1 1)1 × 1–H surface, the Si 2p component corresponding to Si–H bonds decreases, and an additional Si 2p component appears which shifts to a lower binding energy by 109 meV with respect to the Si bulk peak. The new Si 2p component is also observed for 0.25 ML Ag on the Si(1 1 1)7 × 7 surface. These findings suggest that Ag atoms replace the H atoms of the Si(1 1 1)1 × 1–H surface and form direct Ag–Si bonds. Contrary to the widely accepted view that there is no chemical interaction between Ag particles and the H-passivated Si surface, these results are in good agreement with recent first-principles calculations.  相似文献   

15.
In situ electrical resistivity measurement of powdered Mg2Si has been performed in a diamond anvil cell up to 25.4 GPa. At about 22.2 GPa, Mg2Si underwent a pressure-induced semiconductor–metal phase transition that took place in the Ni2In-type structure rather than the anti-fluorite structure predicted theoretically. The other phases (anti-fluorite and anti-cotunnite) belong to the semiconductor phase.  相似文献   

16.
A MVD silica layer that consists of a highly hydrated surface favorable for organosilane surface reaction is investigated. The MVD silica layer lacks free surface silanol groups while supporting a more extensive adsorbed water layer as compared to oxidized Si(1 0 0). Octadecyltrichlorosilane monolayers (OTS) deposited on the MVD silica layer are found to follow the same mechanisms of growth and exhibit properties comparable to those formed on oxidized Si(1 0 0) surfaces. The growth process of octadecylsiloxane films is investigated as a function of immersion time and temperature by utilizing ATR-FTIR, ellipsometry, contact angle analysis, and AFM. The MVD silica layer is shown to support an ordered interfacial water structure that is more tightly bound due to a higher degree of hydrogen bonding associated with the hydroxylated surface. The importance of interfacial water on the OTS film formation process is highlighted and the role of free OH groups on the adsorption mechanism is diminished. It is shown that OTS films can be formed on a highly hydrated surface comparable to those formed on oxidized Si(1 0 0) surfaces.  相似文献   

17.
The atomic structure of silica single layer on a Mo(112) substrate was determined by means of low-energy electron diffraction analysis. The best-fit structure was consistent with findings of previous studies [Phys. Rev. Lett. 95 (2005) 076103 and Phys. Rev. Lett. 103 (2009) 017601]. The unit cell is c(2 × 2)-Si2O5 and is composed of a two-dimensional network of SiO4 tetrahedrons. The tetrahedrons incline slightly to fit the silica network on the Mo(112) surface while maintaining the ideal Si–O bond length. Since there are no dangling bonds in the silica network, the surface is very stable even in the atmosphere.  相似文献   

18.
The influence of Si capping layers on the magnetic properties of thin Fe films grown on Si(1 1 1) has been studied by means of shape anisotropy calculations. Fe surface morphology simulations are realized using experimental STM data. Surface modifications induced by the interaction between the Si overlayer and the Fe surface are performed in agreement with the model proposed in a previous work by Stephan et al. [J. Magn. Mater. 293 (2005) 746]. Calculations of the uniaxial anisotropy energy constant Ku are then performed on the modified Fe surface morphology for different Si deposition geometries as proposed in the model. The relevant data deduced by this method such as anisotropy constants and their related easy axis direction, are directly compared to the experimental ones obtained by ex situ magneto-optical Kerr effect (MOKE) measurements at room temperature using the transverse bias initial inverse susceptibility and torque (TBIIST) method. We show that a very good agreement between those results leads to a confirmation of the proposed model.  相似文献   

19.
Ab initio calculations, based on pseudopotentials and density functional theory, have been performed to investigate the atomic and electronic structure of the group-IV adsorbates (C, Si, Ge, Sn, and Pb) on the GaAs(0 0 1)-(1 × 2) surface considered in two different models: (i) non-segregated Ga-IV-capped structure and (ii) segregated structure in which the group-IV atoms occupying the second layer while the As atom floats to the surface. The non-segregated structure is energetically more favorable than the segregated structure for Sn and Pb, whereas it is the other way around for C, Si, and Ge.  相似文献   

20.
A superior, easy and single-step titanium (Ti) powder assisted surface pretreatment process is demonstrated to enhance the diamond nucleation density of ultrananocrystalline diamond (UNCD) films. It is suggested that the Ti fragments attach to silicon (Si) surface form bond with carbon at a faster rate and therefore facilitates the diamond nucleation. The formation of smaller diamond clusters with higher nucleation density on Ti mixed nanodiamond powder pretreated Si substrate is found to be the main reason for smooth UNCD film surface in comparison to the conventional surface pretreatment by only nanodiamond powder ultrasonic process. The X-ray photoelectron spectroscopic study ascertains the absence of SiC on the Si surface, which suggests that the pits, defects and Ti fragments on the Si surface are the nucleation centers to diamond crystal formation. The glancing-incidence X-ray diffraction measurements from 100 nm thick UNCD films evidently show reflections from diamond crystal planes, suggesting it to be an alternative powerful technique to identify diamond phase of UNCD thin films in the absence of ultra-violet Raman spectroscopy, near-edge X-ray absorption fine structure and transmission electron microscopy techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号