首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Large-eddy simulations (LES) based on the temporal approximate deconvolution model were performed for a forced homogeneous isotropic turbulence (FHIT) with polymer additives at moderate Taylor Reynolds number. Finitely extensible nonlinear elastic in the Peterlin approximation model was adopted as the constitutive equation for the filtered conformation tensor of the polymer molecules. The LES results were verified through comparisons with the direct numerical simulation results. Using the LES database of the FHIT in the Newtonian fluid and the polymer solution flows, the polymer effects on some important parameters such as strain, vorticity, drag reduction, and so forth were studied. By extracting the vortex structures and exploring the flatness factor through a high-order correlation function of velocity derivative and wavelet analysis, it can be found that the small-scale vortex structures and small-scale intermittency in the FHIT are all inhibited due to the existence of the polymers. The extended self-similarity scaling law in the polymer solution flow shows no apparent difference from that in the Newtonian fluid flow at the currently simulated ranges of Reynolds and Weissenberg numbers.  相似文献   

2.
A careful data analysis of far downstream turbulent flows generated by conventional and multiscale grids shows that these decaying flows are very clearly different from both Saffman and Loitsyansky turbulence. The analysis also shows that there are marked differences between the far downstream turbulence behaviours generated by different types of grid. There is an inflow condition dependence on both the normalised energy dissipation and the conserved large-scale invariant.  相似文献   

3.
Hui Xu  Yan Zhang 《Physics letters. A》2009,373(15):1368-1373
We implement a lattice Boltzmann method (LBM) for decaying homogeneous isotropic turbulence based on an analogous Galerkin filter and focus on the fundamental statistical isotropic property. This regularized method is constructed based on orthogonal Hermite polynomial space. For decaying homogeneous isotropic turbulence, this regularized method can simulate the isotropic property very well. Numerical studies demonstrate that the novel regularized LBM is a promising approximation of turbulent fluid flows, which paves the way for coupling various turbulent models with LBM.  相似文献   

4.
Streamwise evolution of longitudinal and transverse velocity structure functions in a decaying homogeneous and nearly isotropic turbulence is reported for Reynolds numbers Re;t up to 720. First, two theoretical relations between longitudinal and transverse structure functions are examined in the light of recently derived relations and the results show that the low-order transverse structure functions can be well approximated by longitudinal ones within the sub-inertial range. Reconstruction of fourth-order transverse structure functions with a recently proposed relation by Grauer et al. is comparatively less valid than the relation already proposed by Antonia et al. Secondly, extended self-similarity methods are used to measure the scaling exponents up to order eight and the streamwise evolution of scaling exponents is explored. The scaling exponents of longitudinal structure functions are, at first location, close to Zybin's model, and at the fourth location, close to She-Leveque model. No obvious wend is found for the streamwise evolution of longitudinal scaling exponents, whereas, on the contrary, transverse scaling exponents become slightly smaller with the development of a steamwise direction. Finally, the stremwise variation of the order-dependent isotropy ratio indicates the turbulence at the last location is closer to isotropic than the other three locations.  相似文献   

5.
Imtiaz Ahmad  卢志明  刘宇陆 《中国物理 B》2014,23(1):14701-014701
Streamwise evolution of longitudinal and transverse velocity structure functions in a decaying homogeneous and nearly isotropic turbulence is reported for Reynolds numbers Reλ up to 720. First, two theoretical relations between longitudinal and transverse structure functions are examined in the light of recently derived relations and the results show that the low-order transverse structure functions can be well approximated by longitudinal ones within the sub-inertial range. Reconstruction of fourth-order transverse structure functions with a recently proposed relation by Grauer et al. is comparatively less valid than the relation already proposed by Antonia et al. Secondly, extended self-similarity methods are used to measure the scaling exponents up to order eight and the streamwise evolution of scaling exponents is explored. The scaling exponents of longitudinal structure functions are, at first location, close to Zybin’s model, and at the fourth location, close to She–Leveque model. No obvious trend is found for the streamwise evolution of longitudinal scaling exponents, whereas, on the contrary, transverse scaling exponents become slightly smaller with the development of a steamwise direction. Finally, the stremwise variation of the order-dependent isotropy ratio indicates the turbulence at the last location is closer to isotropic than the other three locations.  相似文献   

6.
Direct numerical simulations(DNS) were performed for the forced homogeneous isotropic turbulence(FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading influenced by drag-reducing effects.The finite elastic non-linear extensibility-Peterlin model(FENE-P) was used as the conformation tensor equation for the viscoelastic polymer solution.Detailed analyses of DNS data were carried out in this paper for the turbulence scaling law and the topological dynamics of FHIT as well as the important turbulent parameters,including turbulent kinetic energy spectra,enstrophy and strain,velocity structure function,small-scale intermittency,etc.A natural and straightforward definition for the drag reduction rate was also proposed for the drag-reducing FHIT based on the decrease degree of the turbulent kinetic energy.It was found that the turbulent energy cascading in the FHIT was greatly modified by the drag-reducing polymer additives.The enstrophy and the strain fields in the FHIT of the polymer solution were remarkably weakened as compared with their Newtonian counterparts.The small-scale vortices and the small-scale intermittency were all inhibited by the viscoelastic effects in the FHIT of the polymer solution.However,the scaling law in a fashion of extended self-similarity for the FHIT of the polymer solution,within the presently simulated range of Weissenberg numbers,had no distinct differences compared with that of the Newtonian fluid case.  相似文献   

7.
Decaying homogeneous isotropic turbulence with an imposed mean scalar gradient is investigated numerically, thanks to a specific eddy-damped quasi-normal Markovian closure developed recently for passive scalar mixing in homogeneous anisotropic turbulence (BGC). The present modelling is compared successfully with recent direct numerical simulations and other models, for both very large and small Prandtl numbers. First, scalings for the cospectrum and scalar variance spectrum in the inertial range are recovered analytically and numerically. Then, at large Reynolds numbers, the decay and growth laws for the scalar variance and mixed velocity–scalar correlations, respectively, derived in BGC, are shown numerically to remain valid when the Prandtl number strongly departs from unity. Afterwards, the normalised correlation ρwθ is found to decrease in magnitude at a fixed Reynolds number when Pr either increases or decreases, in agreement with earlier predictions. Finally, the small scales return to isotropy of the scalar second-order moments is found to depend not only on the Reynolds number, but also on the Prandtl number.  相似文献   

8.
蔡伟华  李凤臣  张红娜 《中国物理 B》2011,20(12):124702-124702
Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect on turbulence or additive-turbulence interaction, we directly investigate the influence of polymers on velocity gradient tensor including vorticity and strain. By visualizing vortex tubes and sheets, we observe a remarkable inhibition of vortex structures in an intermediate-scale field and a small-scale field but not for a large scale field in DHIT with polymers. The geometric study indicates a strong relevance among the vorticity vector, rate-of-strain tensor, and polymer conformation tensor. Joint probability density functions show that the polymer effect can increase "strain generation resistance" and "vorticity generation resistance", i.e., inhibit the generation of vortex sheets and tubes, ultimately leading to turbulence inhibition effects.  相似文献   

9.
We investigate the self-similar evolution of the transient energy spectrum, which precedes the establishment of the Kolmogorov spectrum in homogeneous isotropic turbulence in three dimensions using the EDQNM closure model. The transient evolution exhibits self-similarity of the second kind and has a non-trivial dynamical scaling exponent, which results in the transient spectrum having a scaling that is steeper than the Kolmogorov k−5/3 spectrum. Attempts to detect a similar phenomenon in DNS data are inconclusive, owing to the limited range of scales available.  相似文献   

10.
Spectral method simulations show that undriven magnetohydrodynamic turbulence spontaneously generates coherent spatial correlations of several types, associated with local Beltrami fields, directional alignment of velocity and magnetic fields, and antialignment of magnetic and fluid acceleration components. These correlations suppress nonlinearity to levels lower than what is obtained from Gaussian fields, and occur in spatial patches. We suggest that this rapid relaxation leads to non-Gaussian statistics and spatial intermittency.  相似文献   

11.
It is shown that the longitudinal correlation functionf is asymptotically proportional tor ?3 asr→∞ and the energy spectrum function is asymptotically proportional toκ 2 asκ→0 if and only if 0<〈(f u d 3 xu〉<∞. Moreover, the latter finiteness condition is shown to be essentially equivalent to 〈(fy·ud 3 x)2〉<∞ for nonstochasticyεL 2(R3). Confirmed by recent experimental measurements, the larger dependencefr ?3 is concomitant with anO(r ?6)=O(f 2) fall-off of the viscous force term in the Kármán-Howarth equation.  相似文献   

12.
13.
The von Kárman-Howarth equation implies an infinity of invariants corresponding to an infinity of different asymptotic behaviours of the double and triple velocity correlation functions at infinite separations. Given an asymptotic behaviour at infinity for which the Birkhoff-Saffman invariant is not infinite, there are either none, or only one or only two finite invariants. If there are two, one of them is the Loitsyansky invariant and the decay of large eddies cannot be self-similar. We examine the consequences of this infinity of invariants on a particular family of exact solutions of the von Kárman-Howarth equation.  相似文献   

14.
15.
燕秀林  冉政 《中国物理 B》2009,18(10):4360-4365
The starting point for this paper lies in the results obtained by Tatsumi (2004) for isotropic turbulence with the self-preserving hypothesis. A careful consideration of the mathematical structure of the one-point velocity distribution function equation obtained by Tatsumi (2004) leads to an exact analysis of all possible cases and to all admissible solutions of the problem. This paper revisits this interesting problem from a new point of view, and obtains a new complete set of solutions. Based on these exact solutions, some physically significant consequences of recent advances in the theory of homogenous statistical solution of the Navier--Stokes equations are presented. The comparison with former theory was also made. The origin of non--Gaussian character could be deduced from the above exact solutions.  相似文献   

16.
17.
We review some advances in the theory of homogeneous, isotropic turbulence. Our emphasis is on the new insights that have been gained from recent numerical studies of the three-dimensional Navier Stokes equation and simpler shell models for turbulence. In particular, we examine the status of multiscaling corrections to Kolmogorov scaling, extended self similarity, generalized extended self similarity, and non-Gaussian probability distributions for velocity differences and related quantities. We recount our recent proposal of a wave-vector-space version of generalized extended self similarity and show how it allows us to explore an intriguing and apparently universal crossover from inertial- to dissipation-range asymptotics.  相似文献   

18.
In this paper we investigate the scaling properties of three-dimensional isotropic and homogeneous turbulence. We analyze a new form of scaling (extended self-similarity) recently introduced in the literature. We found that anomalous scaling of the velocity structure functions is clearly detectable even at a moderate and low Reynolds number and it extends over a much wider range of scales with respect to the inertial range.  相似文献   

19.
20.
The emergence of anomalous fast decay regimes in homogeneous isotropic turbulence (HIT) decay is investigated via both theoretical analysis and eddy-damped quasi-normal Markovian simulations. The work provides new insight about a fundamental issue playing a role in HIT decay, namely the influence of non-standard shapes of the energy spectrum, in particular in the large energetic scale region. A detailed analysis of the kinetic energy spectrum E(k) and the non-linear energy transfer T(k) shows that anomalous decay regimes are associated with the relaxation of initial energy spectra which exhibit a bump at energetic scales. This feature induces an increase in the energy cascade rate, toward solutions with a smooth shape at the spectrum peak. Present results match observations reported in wind-tunnel experiments dealing with turbulence decay in the wake of grids and bluff bodies, including scaling laws for the dissipation parameter C?. They also indicate that the ratio between the initial eddy turnover time and the advection time determines of how fast anomalous regimes relax toward classical turbulence free-decay. This parameter should be used for consistent data comparison and it opens perspectives for the control of multiscale effects in industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号