首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report a source of free electron pulses based on a field emission tip irradiated by a low-power femtosecond laser. The electron pulses are shorter than 70 fs and originate from a tip with an emission area diameter down to 2 nm. Depending on the operating regime we observe either photofield emission or optical field emission with up to 200 electrons per pulse at a repetition rate of 1 GHz. This pulsed electron emitter, triggered by a femtosecond oscillator, could serve as an efficient source for time-resolved electron interferometry, for time-resolved nanometric imaging and for synchrotrons.  相似文献   

2.
We report on electron emission from tungsten tips with the help of 800 nm-8 fs laser pulses from a Ti:sapphire laser oscillator. We have measured autocorrelation traces of the exciting laser pulse in the photoelectron current, which allows a measurement of the non-linearity as a function of DC voltage applied to the tip. These data are well described by a numerical integration of the one-dimensional Schrödinger equation. The simulation shows us that electron emission resolves the electric field structure of the driving laser pulse, a regime which is currently an extremely fruitful area of research with atoms in the gas phase. For an 8 fs laser pulse with the correct carrier-envelope phase setting the emission duration is as short as 800 nm.  相似文献   

3.
High power femtosecond pulses in the Vacuum Ultra Violet (VUV) have been generated through the nonlinear interaction of femtosecond KrF pulses with xenon and argon gas. Under near resonant two photon excitation of xenon by a femtosecond KrF laser, parametric four wave mixing processes lead to VUV pulses at 147 and 108 nm with pulse energies in the 10 µJ range. Tuning is demonstrated by mixing the KrF pulse with a 500 fs dye laser pulse at 497 nm, resulting in 165 nm emission. In argon, a three photon resonance leads to third harmonic generation at 83 nm and micro joule level pulses near 127 nm generated by a six wave mixing process. Since the spectra of the VUV pulses show an ionization-induced blue shift with increasing KrF laser intensity, the VUV pulses can be shown to have temporal duration less than the pulse width (450 fs) of the KrF laser. Blue shifting of the third harmonic of the KrF laser in argon is dominated by a reduction in the neutral gas density rather than by an increase in the electron density.  相似文献   

4.
Ionization of D2 launches a vibrational wave packet on the ground state of D+2. Removal of the second electron places a pair of D+ ions onto a Coulombic potential. Measuring the D+ kinetic energy determines the time delay between the first and the second ionization. Caught between a falling ionization and a rapidly rising intensity, the typical lifetime of the D+2 intermediate is less than 5 fs when an intense 8.6 fs laser pulse is used. We simulate Coulomb explosion imaging of the ground state wave function of D2 by a 4 fs optical pulse and compare with our experimental observations.  相似文献   

5.
朱竹青  王晓雷 《物理学报》2011,60(8):85205-085205
对强飞秒激光聚焦在空气中所激发的等离子体的发射光谱进行了实验研究.结果表明,光谱特征表现为短波段(截至波长为340 nm)强烈的连续谱和长波段(波长在800 nm附近)强度相对较低的线光谱.在脉冲宽度(50 fs)保持不变而不断调节激光脉冲能量时,等离子体光谱形状的特征基本相似;当激光脉冲能量(1 mJ)保持不变而脉冲宽度从50 fs增加至500 fs和1 ps时,连续谱的峰值(500 nm)显得格外突出,并开始呈现出线光谱特征. 关键词: 飞秒激光 激光空气等离子体 发射光谱 线光谱  相似文献   

6.
We have measured coincident ion pairs produced in the Coulomb explosion of H2 by 8-30 fs laser pulses at different laser intensities. We show how the Coulomb explosion of H2 can be experimentally controlled by tuning the appropriate pulse duration and laser intensity. For laser pulses less than 15 fs, we found that the rescattering-induced Coulomb explosion is dominated by first-return recollisions, while for longer pulses and at the proper laser intensity, the third return can be made to be the major one. Additionally, by choosing suitable pulse duration and laser intensity, we show H2 Coulomb explosion proceeding through three distinct processes that are simultaneously observable, each exhibiting different characteristics and revealing distinctive time information about the H2 evolution in the laser pulse.  相似文献   

7.
An all-optical method to determine the duration of ultrashort electron pulses is presented. This technique makes use of the laser pulse ponderomotive potential to effectively sample the temporal envelope of the electron pulse by sequentially scattering different sections of the pulse out of the main beam. Using laser pulse parameters that are easily accessible with modern tabletop chirped-pulse amplification laser sources, it is possible to measure the instantaneous duration of electron pulses shorter than 100 fs in the energy range that is most useful for electron diffraction studies, 10-300 keV.  相似文献   

8.
Calculations are presented for the first four (odd and even) harmonics of an 800 nm laser from a gold surface, with pulse widths ranging from 100 down to 14 fs. For peak laser intensities above 1 GW/cm2 the harmonics are enhanced because of a partial depletion of the initial electron states. At 1011 W/cm2 of peak laser intensity the calculated conversion efficiency for 2nd-harmonic generation is 3 × 10−9, while for the 5th-harmonic it is 10−10. The generated harmonic pulses are broadened and delayed relative to the laser pulse because of the finite relaxation times of the excited electronic states. The finite electron relaxation times cause also the broadening of the autocorrelations of the laser pulses obtained from surface harmonic generation by two time-delayed identical pulses. Comparison with recent experimental results shows that the response time of an autocorrelator using nonlinear optical processes in a gold surface is shorter than the electron relaxation times. This seems to indicate that for laser pulses shorter than ∼30 fs, the fast nonresonant channel for multiphoton excitation via continuum-continuum transitions in metals becomes important as the resonant channel becomes slow (relative to the laser pulse) and less efficient.  相似文献   

9.
We demonstrate ultrafast resonant energy absorption of rare-gas doped He nanodroplets from intense few-cycle (~10 fs) laser pulses. We find that less than 10 dopant atoms "ignite" the droplet to generate a nonspherical electronic nanoplasma resulting ultimately in complete ionization and disintegration of all atoms, although the pristine He droplet is transparent for the laser intensities applied. Our calculations at those intensities reveal that the minimal pulse length required for ignition is about 9 fs.  相似文献   

10.
A strong effect of radiation damping on the interaction of an ultraintense laser pulse with an overdense plasma slab is found and studied via a relativistic particle-in-cell simulation including ionization. Hot electrons generated by the irradiation of a laser pulse with a radiance of I lambda(2)>10(22) W microm(2)/cm(2) and duration of 20 fs can convert more than 35% of the laser energy to radiation. This incoherent x-ray emission lasts for only the pulse duration and can be intense. The radiation efficiency is shown to increase nonlinearly with laser intensity. Similar to cyclotron radiation, the radiation damping may restrain the maximal energy of relativistic electrons in ultraintense-laser-produced plasmas.  相似文献   

11.
The rapid melting and resolidification of gold films irradiated by laser pulses less than 100 fs are investigated using the dual-hyperbolic two-step model. The solid–liquid interfacial velocity in the ultrafast phase change process is obtained by coupling a hyperbolic interfacial energy balance equation and nucleation dynamics. The results are compared with the experimental data for the 28-fs laser. The effects of laser pulse widths and fluences on melting process are investigated. A phase chart of the variations of pulse widths and fluences is established. The relationship between the melting threshold and ablation threshold is also presented.  相似文献   

12.
黄沛  方少波  黄杭东  侯洵  魏志义 《物理学报》2018,67(24):244204-244204
相干合成技术是超快光学领域的重要研究方向之一.当单路脉冲激光的连续谱超过一个倍频程时,精确控制其光谱相位(色散管理)是获得亚周期超短脉冲激光的关键.由于常见的脉冲压缩系统存在光谱带宽限制,因此多通道相干合成技术受到了广泛的关注.本文将充气空心光纤展宽后的超倍频程连续光谱分波段独立压缩,并利用平衡光学互相关方法锁定子脉冲之间的相位延迟,获得了4.1 fs的合成脉冲.实验结果表明相干合成技术在高能量亚周期超快光场调控中存在优势.  相似文献   

13.
实验研究了正色散固体介质中的激光脉冲自压缩现象,证明了无需任何外加色散补偿情况下,固体透明介质中的自聚焦传输过程可使高功率飞秒激光脉冲实现时域脉冲压缩,并详细研究了输出脉冲的时域和频域特性随入射脉冲强度的演化规律.实验结果表明脉冲自压缩量随入射脉冲强度的增加呈递增趋势,然而当入射光强增大到足以引起超连续谱及锥形辐射产生时,脉冲时域形状会发生分裂.此外还发现发散光束入射情况下同样可以观察到脉冲自压缩现象. 关键词: 超短激光脉冲 脉冲压缩 非线性传输  相似文献   

14.
We have investigated the generation of widely-separated bound pulses with a high power passively mode-locked Yb-doped double clad fiber laser. We report on the emission of bound pulses of 5 ps whose separation can exceed 180 ps. Pulses are further compressed extra-cavity to 140 fs, leading to pulse separations that can reach approximately 1300 pulse widths, while pulses remain bound. Scenarios leading to these regimes are detailed. RF analysis shows an important reduction of the amplitude noise of the laser when pulses bind together. Finally, we report on a new regime of multiple pulse emission of this fiber laser: stable co-emission of a single-pulse and a pair of bound pulses in the same cavity round trip. PACS 42.55.Wd; 42.65.Re  相似文献   

15.
The most challenging application of time resolved spectroscopy is to directly observe the structural and electronic dynamics. Here we present the combination of x-ray absorption spectroscopy with laser driven x-ray sources, offering atomic spatial and temporal resolution. Our new approaches for optimization of laser driven x-ray sources resulted in the demonstration of spatially coherent sub-20 fs x-ray pulses in a range up to several keV. We excited polycrystalline silicon with an ultrashort laser pulse and characterized the collective motion of atoms with time resolved x-ray absorption spectroscopy at a temporal resolution of less than 20 fs. Finally, we have shown the feasibility of probing the dynamics of the electronic structure of silicon and carbon with near edge x-ray absorption spectroscopy.  相似文献   

16.
Femtosecond pulsed lasers have become an invaluable tool for examining ultrafast nonequilibrium dynamics. With pulsewidths of a few hundred femtoseconds (fs) to less than 10 fs, these lasers can clearly provide unprecedented temporal resolution. By amplifying ultrashort laser pulses to sufficient levels of energy per pulse, it is possible to exploit the nonlinear optical properties of certain materials to generate extremely broadband pulses. These pulses retain the time structure of the incident pulse, but contain a spectral bandwidth extending from the infrared to as far as the ultraviolet. By generating white-light pulses, it becomes possible to probe ultrafast nonlinear processes over a large range of energies. In this paper, the process of generating white-light ultrashort pulses will be presented, along with a discussion of different probing techniques and procedures necessary for modeling the transient optical data. Finally, results from pump-probe measurements using a white-light probe on indium phosphide (InP) films will be presented as a demonstration of this technique.  相似文献   

17.
We have studied experimentally and theoretically high-order harmonic generation using a laser field with a time-dependent ellipticity. We show that the harmonic emission can be confined into a narrow temporal window, in which the fundamental polarization is quasi-linear. This allows a single attosecond pulse (200 as) with a fundamental field obtained from 10 fs pulse to be generated. PACS 42.65.Ky; 42.65.Re; 32.80.Wr  相似文献   

18.
The effect of asymmetric laser pulses on electron yield from a laser wakefield accelerator has been experimentally studied using >10(19) cm(-3) plasmas and a 10 TW, >45 fs, Ti:Al2O3 laser. The laser pulse shape was controlled through nonlinear chirp with a grating pair compressor. Pulses (76 fs FWHM) with a steep rise and positive chirp were found to significantly enhance the electron yield compared to pulses with a gentle rise and negative chirp. Theory and simulation show that fast rising pulses can generate larger amplitude wakes that seed the growth of the self-modulation instability, and that frequency chirp is of minimal importance for the experimental parameters.  相似文献   

19.
The kinetic energy distribution of D+ ions resulting from the interaction of a femtosecond laser pulse with D2 molecules is calculated based on the rescattering model. From analyzing the molecular dynamics, it is shown that the recollision time between the ionized electron and the D+2 ion can be read from the D+ kinetic energy peaks to attosecond accuracy. We further suggest that a more precise reading of the clock can be achieved by using shorter fs laser pulses (about 15 fs).  相似文献   

20.
Enhanced soliton self-frequency shift of ultrashort light pulses   总被引:1,自引:0,他引:1  
Photonic-crystal fibers are used to study scenarios of soliton self-frequency shift for laser pulses with initial pulse lengths much less than the Raman-mode period of the fiber material. A typical frequency shift of subnanojoule Ti: sapphire-laser pulses with an initial duration of about 30 fs transmitted through a fiber with a core diameter of about 1.6 μm and a length of about 7 cm exceeds 100 THz. The rate of soliton self-frequency shift is radically increased by reducing the initial pulse width.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号