首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The statistical mechanics of nonrelativistic fermions in a constant magnetic field is considered from the quantum field theory point of view. The fermionic determinant is computed using a general procedure that is compatible with the all reasonable regularization procedures. The nonrelativistic grand-potential can be expressed in terms polylogarithm functions, whereas the partition function in 2+1 dimensions and vanishing chemical potential can be compactly written in terms of the Dedekind eta function. The strong and weak magnetic fields limits are easily studied in the latter case by using the duality properties of the Dedekind function.  相似文献   

2.
We consider a pure U(1) quantum gauge field theory on a general Riemannian compact four manifold. We compute the partition function with Abelian Wilson loop insertions. We find its duality covariance properties and derive topological selection rules. Finally, we show that, to have manifest duality, one must assume the existence of twisted topological sectors besides the standard untwisted one.  相似文献   

3.
We use the duality and the algebra of the order-disorder variables to obtain a functional inversion relation for the Ashkin-Teller model in two dimensions. We then consider the completely integrable special cases to show that the algebra of the order-disorder variables, (self) duality, and a finite number of symmetries lead to the complete determination of the partition function of these theories solely in terms of the duality factor when the dynamics is specified by explicit analyticity assumptions. We also discuss the quantum nature of these operators and the duality.  相似文献   

4.
We introduce a new definition of the thermal partition function in string theory. With this new definition, the thermal partition functions of all of the string theories obey thermal duality relations with self-dual Hagedorn temperature beta(2)(H) = 4pi(2)alpha('). A beta-->beta(2)(H)/beta transformation maps the type I theory into a new string theory (type I) with thermal D p-branes, spatial hypersurfaces supporting a p-dimensional finite temperature non-Abelian Higgs-gauge theory for p< or =9. We demonstrate a continuous phase transition in the behavior of the static heavy quark-antiquark potential for small separations r(2)(*)相似文献   

5.
龙桂鲁  刘洋 《物理学进展》2011,28(4):410-431
我们综述最近提出的广义量子干涉原理及其在量子计算中的应用。广义量子干涉原理是对狄拉克单光子干涉原理的具体化和多光子推广,不但对像原子这样的紧致的量子力学体系适用,而且适用于几个独立的光子这样的松散量子体系。利用广义量子干涉原理,许多引起争议的问题都可以得到合理的解释,例如两个以上的单光子的干涉等问题。从广义量子干涉原理来看双光子或者多光子的干涉就是双光子和双光子自身的干涉,多光子和多光子自身的干涉。广义量子干涉原理可以利用多组分量子力学体系的广义Feynman积分表示,可以定量地计算。基于这个原理我们提出了一种新的计算机,波粒二象计算机,又称为对偶计算机。在原理上对偶计算机超越了经典的计算机和现有的量子计算机。在对偶计算机中,计算机的波函数被分成若干个子波并使其通过不同的路径,在这些路径上进行不同的量子计算门操作,而后这些子波重新合并产生干涉从而给出计算结果。除了量子计算机具有的量子平行性外,对偶计算机还具有对偶平行性。形象地说,对偶计算机是一台通过多狭缝的运动着的量子计算机,在不同的狭缝进行不同的量子操作,实现对偶平行性。目前已经建立起严格的对偶量子计算机的数学理论,为今后的进一步发展打下了基础。本文着重从物理的角度去综述广义量子干涉原理和对偶计算机。现在的研究已经证明,一台d狭缝的n比特的对偶计算机等同与一个n比特+一个d比特(qudit)的普通量子计算机,证明了对偶计算机具有比量子计算机更强大的能力。这样,我们可以使用一台具有n+log2d个比特的普通量子计算机去模拟一个d狭缝的n比特对偶计算机,省去了研制运动量子计算机的巨大的技术上的障碍。我们把这种量子计算机的运行模式称为对偶计算模式,或简称为对偶模式。利用这一联系反过来可以帮助我们理解广义量子干涉原理,因为在量子计算机中一切计算都是普通的量子力学所允许的量子操作,因此广义量子干涉原理就是普通的量子力学体系所允许的原理,而这个原理只是是在多体量子力学体系中才会表现出来。对偶计算机是一种新式的计算机,里面有许多问题期待研究和发展,同时也充满了机会。在对偶计算机中,除了幺正操作外,还可以允许非幺正操作,几乎包括我们可以想到的任何操作,我们称之为对偶门操作或者广义量子门操作。目前这已经引起了数学家的注意,并给出了广义量子门操作的一些数学性质。此外,利用量子计算机和对偶计算机的联系,可以将许多经典计算机的算法移植到量子计算机中,经过改造成为量子算法。由于对偶计算机中的演化是非幺正的,对偶量子计算机将可能在开放量子力学的体系的研究中起到重要的作用。  相似文献   

6.
Introducing an appropriate renormalization to the phase space of the bion, we study the quantum statistical mechanics of the bion in the one-dimensional sine-Gordon system. A bion representation is found for the partition function of the system in the limit of weak coupling, i.e., the free field. From the partition function, the bion distribution is calculated and an approximate analytic formula is obtained both at low and intermediate temperatures. The obtained bion distribution is neither the Bose distribution nor the Fermi distribution, nor the Boltzmann distribution at low temperatures. The self-energy of the bion at finite temperature is also discussed.  相似文献   

7.
We study the family of spin-S quantum spin chains with a nearest neighbor interaction given by the negative of the singlet projection operator. Using a random loop representation of the partition function in the limit of zero temperature and standard techniques of classical statistical mechanics, we prove dimerization for all sufficiently large values of S.  相似文献   

8.
The contribution of nontrivial vacuum (topological) excitations, more specifically vortex configurations of the self-dual Chern–Simons–Higgs model, to the functional partition function is considered. By using a duality transformation, we arrive at a representation of the partition function in terms of which explicit vortex degrees of freedom are coupled to a dual gauge field. By matching the obtained action to a field theory for the vortices, the physical properties of the model in the presence of vortex excitations are then studied. In terms of this field theory for vortices in the self-dual Chern–Simons–Higgs model, we determine the location of the critical value for the Chern–Simons parameter below which vortex condensation can happen in the system. The effects of self-energy quantum corrections to the vortex field are also considered.  相似文献   

9.
赵仁  张丽春  胡双启 《物理学报》2006,55(8):3902-3905
运用量子统计的方法,直接求解Schwarzschild时空背景下玻色场和费米场的配分函数,得到熵的积分表达式.按照最近的研究结果,认为黑洞的Hawking辐射过程是隧道效应过程,在考虑黑洞隧道效应产生过程中黑洞能量发生变化的基础上,给出积分的下限为黑洞的视界位置.由此得到黑洞熵的主要项为视界面积的1/4.不存在使人疑惑的紫外截断因子,并且由此可得黑洞辐射粒子的能量与辐射温度成正比的结论. 关键词: 黑洞熵 量子统计 隧道效应 反作用  相似文献   

10.
2000年以来, 有关非对易空间的各种物理问题一直是研究的热点, 并在量子力学、场论、凝聚态物理、天体物理等各领域中已被广泛地探讨. 采用统计物理方法讨论非对易效应对谐振子体系热力学性质的影响. 先以对易相空间中确定二维和三维谐振子的配分函数求出谐振子体系的热力学函数; 非对易相空间中的坐标和动量通过坐标-坐标和动量-动量之间的线性变换而以对易相空间中的坐标和动量来表示; 最终以非对易相空间中求出配分函数来讨论非对易效应对谐振子体系热力学性质的影响. 结果显示, 在非对易相空间中谐振子体系的配分函数和熵表达式均包含因非对易引起的修正项. 从分析结果得出如下结论: 非对易效应对谐振子的配分函数和熵函数等微观状态函数有一定的影响, 但对谐振子体系的内能、热容量等宏观热力学函数没有影响. 研究结果只是对应于满足玻尔兹曼统计的经典体系, 对于满足费米-狄拉克和玻色-爱因斯坦统计的量子体系需进一步推广研究.  相似文献   

11.
The partition function zeros of the anisotropic XY chain in a complex transverse field are studied analytically and numerically. It is found that the partition function zeros of the periodic and quasiperiodic quantum Ising chain lie on the circle at zero temperature and the radius equal to the values of the critical field. For the periodic and quasiperiodic anisotropic XY chains, the closed curves are split to two or three closed curves as the anisotropic parameter gamma decreases at a given ratio of two kinds of exchange interactions. For the isotropic XX case, the partition function zeros lie on the straight segments which are parallel to the real axis and the segments move towards the real axis as the temperature goes to zero.  相似文献   

12.
General Quantum Interference Principle and Duality Computer   总被引:2,自引:0,他引:2  
In this article, we propose a general principle of quantum interference for quantum system, and based on this we propose a new type of computing machine, the duality computer, that may outperform in principle both classical computer and the quantum computer. According to the general principle of quantum interference, the very essence of quantum interference is the interference of the sub-waves of the quantum system itself. A quantum system considered here can be any quantum system: a single microscopic particle, a composite quantum system such as an atom or a molecule, or a loose collection of a few quantum objects such as two independent photons. In the duality computer, the wave of the duality computer is split into several sub-waves and they pass through different routes, where different computing gate operations are performed. These sub-waves are then re-combined to interfere to give the computational results. The quantum computer, however, has only used the particle nature of quantum object. In a duality computer, it may be possible to find a marked item from an unsorted database using only a single query, and all NP-complete problems may have polynomial algorithms. Two proof-of-the-principle designs of the duality computer are presented: the giant molecule scheme and the nonlinear quantum optics scheme. We also propose thought experiment to check the related fundamental issues, the measurement efficiency of a partial wave function.  相似文献   

13.
14.
The decay rate for a particle in a metastable cubic potential is investigated in the quantum regime by the Euclidean path integral method in semiclassical approximation. The imaginary time formalism allows one to monitor the system as a function of temperature. The family of classical paths, saddle points for the action, is derived in terms of Jacobian elliptic functions whose periodicity sets the energy-temperature correspondence. The period of the classical oscillations varies monotonically with the energy up to the sphaleron, pointing to a smooth crossover from the quantum to the activated regime. The softening of the quantum fluctuation spectrum is evaluated analytically by the theory of the functional determinants and computed at low T up to the crossover. In particular, the negative eigenvalue, causing an imaginary contribution to the partition function, is studied in detail by solving the Lamè equation which governs the fluctuation spectrum. For a heavvy particle mass, the decay rate shows a remarkable temperature dependence mainly ascribable to a low lying soft mode and, approaching the crossover, it increases by a factor five over the predictions of the zero temperature theory. Just beyond the peak value, the classical Arrhenius behavior takes over. A similar trend is found studying the quartic metastable potential but the lifetime of the latter is longer by a factor ten than in a cubic potential with same parameters. Some formal analogies with noise-induced transitions in classically activated metastable systems are discussed.  相似文献   

15.
A scheme for measuring complex temperature partition functions of Ising models is introduced. Two applications of this scheme are presented. First, through appropriate Wick rotations, those amplitudes can be analytically continued to yield estimates for partition functions of Ising models. Bounds on the estimated error are provided through a central-limit theorem whose validity extends beyond the present context; it holds for example for estimations of the Jones polynomial. The kind of state preparations and measurements involved in this application can be made independent of the system size or the parameters of the system being simulated. Second, the scheme allows to accurately estimate non-trivial invariants of links. Another result concerns the computational power of estimations of partition functions for real temperature classical ferromagnetic Ising models. We provide conditions under which estimating such partition functions allows to reconstruct scattering amplitudes of quantum circuits, making the problem BQP-hard. We also show fidelity overlaps for ground states of quantum Hamiltonians, which serve as a witness to quantum phase transitions, can be estimated from classical Ising model partition functions. Finally, we discuss how accurate corner magnetisation measurements on thermal states of two-dimensional Ising models lead to fully polynomial random approximation schemes (FPRAS) for the partition function.  相似文献   

16.
17.
The generalized uncertainty relation is introduced to calculate the quantum statistical entropy corresponding to cosmic horizon. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is no divergent logarithmic term in the original brick-wall method. And it is obtained that the quantum statistical entropy corresponding to cosmic horizon is proportional to the area of the horizon. Further it is shown that the entropy corresponding to cosmic horizon is the entropy of quantum state on the surface of horizon. The black hole’s entropy is the intrinsic property of the black hole. The entropy is a quantum effect. In our calculation, by using the quantum statistical method, we obtain the partition function of Bose field and Fermi field on the background of five-dimensional spacetime. We provide a way to study the quantum statistical entropy corresponding to cosmic horizon in the higher-dimensional spacetime. Supported by the National Natural Science Foundation of China (Grant No. 10374075) and the Natural Science Foundation of Shanxi Province, China (Grant No. 2006011012)  相似文献   

18.
由弱磁场中弱相互作用费米气体的配分函数,导出有限粒子数条件下系统的配分函数G(β,N ).在此基础上,运用统计平均方法求解有限粒子数弱相互作用费米气体热力学量的解析表达式,给出各种温度条件下的热力学性质.研究结果表明,有限粒子数效应使各个热力学量都产生了一个修正项,除温度趋于0外,粒子数对化学势的修正项有直接影响,对内能和热容量的修正项并不产生直接影响.并且有限粒子数效应总是降低化学势,从而使化学势的0点向低温漂移,粒子数增大,会削弱这种效应,粒子间的相互排斥会加强这种效应.  相似文献   

19.
Antony Streklas 《Physica A》2007,385(1):124-136
In the present paper we study the quantum damped harmonic oscillator on non-commuting two-dimensional space. We calculate the time evolution operator and we find the exact propagator of the system. We investigate as well the thermodynamic properties of the system using the standard canonical density matrix. We find the statistical distribution function and the partition function. We calculate the specific heat for the limiting case of critical damping, where the frequencies of the system vanish. Finally we study the state of the system when the phase space of the second dimension becomes classical. We find that these systems have some singularities and zeros for low temperatures.  相似文献   

20.
Using the quantum statistical method, the difficulty of solving the wave equation on the background of the black hole is avoided. We directly solve the partition functions of Bose and Fermi field on the background of an axisymmetric Kerr-Newman black hole using the new equation of state density motivated by the generalized uncertainty principle in the quantum gravity. Then near the black hole horizon, we calculate entropies of Bose and Fermi field between the black hole horizon surface and the hypersurface with the same inherent radiation temperature measured by an observer at an infinite distance. In our results there are not cutoffs and little mass approximation introduced in the conventional brick-wall method. The series expansion of the black hole entropy is obtained. And this series is convergent. It provides a way for studying the quantum statistical entropy of a black hole in a non-spherical symmetric spacetime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号