首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We report on the phase behavior and scattering properties of colloidal complexes made from block copolymers and surfactants. The copolymer is poly(sodium acrylate)-b-poly(acrylamide), hereafter abbreviated as PANa-PAM, with molecular weight 5000 g/mol for the first block and 30000 g/mol for the second. In aqueous solutions and neutral pH, poly(sodium acrylate) is a weak polyelectrolyte, whereas poly(acrylamide) is neutral and in good-solvent conditions. The surfactant is dodecyltrimethylammonium bromide (DTAB) and is of opposite charge with respect to the polyelectrolyte block. Combining dynamical light scattering and small-angle neutron scattering, we show that in aqueous solutions PANa-PAM diblocks and DTAB associate into colloidal complexes. For surfactant-to-polymer charge ratios Z lower than a threshold (Z(C) approximately 0.3), the complexes are single surfactant micelles decorated by few copolymers. Above the threshold, the colloidal complexes reveal an original core-shell microstructure. We have found that the core of typical radius 100-200 A is constituted from densely packed surfactant micelles connected by the polyelectrolyte blocks. The outer part of the colloidal complex is a corona and is made from the neutral poly(acrylamide) chains. Typical hydrodynamic sizes for the whole aggregate are around 1000 A. The aggregation numbers expressed in terms of numbers of micelles and copolymers per complex are determined and found to be comprised between 100-400, depending on the charge ratio Z and on the total concentration. We have also shown that the sizes of the complexes depend on the exact procedure of the sample preparation. We propose that the driving mechanism for the complex formation is similar to that involved in the phase separation of homopolyelectrolyte/surfactant systems. With copolymers, the presence of the neutral blocks prevents the macroscopic phase separation from occurring.  相似文献   

2.
利用同位旋相关的量子分子动力学模型研究了中能重离子碰撞中同位旋分馏过程.研究结果表明自由粒子中质比与碎片中质比的比值即同位旋分馏强度灵敏地依赖于对称势,而对同位旋相关核子–核子碰撞截面的依赖很弱.同位旋分馏对对称势的灵敏主要来自于气相部分,而液相部分对对称势不够灵敏.气相部分灵敏地依赖于对称势是直接造成同位旋分馏强度对对称势灵敏的主要原因.同时还讨论了各种液相部分的取法,其结果表明不同取法对以上结论的影响不大.因此理论结果与实验数据可以直接比较从而提取对称势的知识.并对引发同位旋分馏的动力学的起因进行了分析和讨论.  相似文献   

3.
We consider simple modifications of the conventional Wilson action for lattice gauge theory. An SU(2) action is defined on “plaquettes” of 2×1 links. It is found to possess phase transitions in three- and four-dimensional realisations of the model. A similar model with gauge group Z(2) is also studied, and found to have two phases in three and four dimensions. We discuss the phase structure of Z(N) gauge models in four dimensions with several coupling constants and present phase diagrams for Z(4), Z(5) and Z(6).  相似文献   

4.
The confinement/deconfinement phase transition in SU(3) lattice gauge theories at high temperatures is analogous to that of the Z(3) gauge theories. We study various Z(3) gauge-matter theories that result from replacing the gauge group SU(3) with its center Z(3). We include large-mass fermions in the Wilson formulation and allow a chemical potential. We show that in the limit of strong coupling and high temperature the (3 + 1)-dimensional theory becomes a three state, three-dimensional Potts model with uniform external fields of real and imaginary strengths related to the fermion mass and chemical potential. By studying the phase structure of the q = 3, d = 3 Potts model with external fields we argue that the confinement/deconfinement phase transition is first order, but highly sensitive to external fields, and that it does not occur at “strong coupling” in a Z(3) gauge theory if there is a light enough fermion present. We discuss the consequences of this result for QCD.  相似文献   

5.
We theoretically study binary mixtures of thin and thick hard rods with diameter ratio more extreme than 1:4. The bulk phase diagram of these systems exhibits a triple point, where an isotropic (I) phase coexists with two nematic phases ( N1 and N2) of different composition. Using density functional theory, we predict that the I-N2 interface is completely wet by N1 upon approach of the the I-N1-N2 triple point. This entropic triple point wetting should be experimentally observable in colloidal suspensions of rodlike particles.  相似文献   

6.
We study the Z(N) spin model, as well as its limiting forms for N → ∞ by means of a variational approach. We find, for 1 + 1 dimensions, the two transitions of the model separating the disordered, massless and ordered phases. In the case of 2 + 1 dimensions, we obtain only the disorder-order phase transition which implies for N → ∞ a single confining phase for the dual U(1) gauge theory.  相似文献   

7.
The phase behavior of a two-dimensional colloidal system subject to a commensurate triangular potential is investigated. We consider the integer number of colloids in each potential minimum as rigid composite objects with effective discrete degrees of freedom. It is shown that there is a rich variety of phases including "herringbone" and "Japanese 6 in 1" phases. The ensuing phase diagram and phase transitions are analyzed analytically within variational mean-field theory and supplemented by Monte Carlo simulations. Consequences for experiments are discussed.  相似文献   

8.
Density functional theory of freezing is used to study the phase transitions in a system of spherical colloidal particles dispersed in nematic host confined to two dimensions. We have considered both the one-component and two-component systems of the colloidal dispersions. Particles are assumed to interact via director distortion-mediated purely repulsive potential which scales as the fifth power of the inverse interparticle separation. The pair correlation functions needed as input information in the density functional theory are calculated by solving Roger–Young integral equation theory. In one-component system, a triangular crystalline phase is found to be stable. On the other hand, considering the freezing of the fluid phase of the binary mixture into a substitutionally disordered triangular solid, the temperature–composition phase diagram is found to have spindle shape for the ratio of quadrupole moment of the particles of the components being 0.9 and 0.8. The phase diagram changes to an azeotrope at a ratio 0.7. The results are verifiable in real-space experiments on nematic quadrupoles confined to a two-dimensional plane.  相似文献   

9.
We study a single species of fermionic atoms in an "effective" magnetic field at total filling factor ν(f)=1, interacting through a p-wave Feshbach resonance, and show that the system undergoes a quantum phase transition from a ν(f)=1 fermionic integer quantum Hall state to ν(b)=1/4 bosonic fractional quantum Hall state as a function of detuning. The transition is in the (2+1)D Ising universality class. We formulate a dual theory in terms of quasiparticles interacting with a Z(2) gauge field and show that charge fractionalization follows from this topological quantum phase transition. Experimental consequences and possible tests of our theoretical predictions are discussed.  相似文献   

10.
The vortex free energy was proposed to distinguish between the confinement and the Higgs phase (in the sense of 't Hooft) in lattice gauge theory, when matter fields are present that transform according to an arbitrary representation of the gauge group. In this paper I consider the Z(2) Higgs model and calculate the vortex free energy in the screening part of the confining/screening phase of Fradkin and Shenker. The result does not agree with the expected behavior that corresponds to the structure of the phase diagram. Therefore the vortex free energy is no longer a good indicator for confinement when matter fields transform non-trivially under the center of the gauge group (such as Z(2) Higgs scalars).  相似文献   

11.
The structure and phase behaviour of a colloidal dispersion of plate-like particles are described. The plates are nickel (II) hydroxide and have short-range, repulsive interactions and a low polydispersity. As the concentration of the plates is increased, an equilibrium phase separation between a columnar phase and a less ordered phase is observed. Complementary measurements using small-angle neutron and small-angle X-ray scattering have been used to distinguish the columnar phase from other possible ordered structures. Previously isotropic-nematic phase transitions have been observed [#!ref1!#], however this dispersion forms the more highly ordered columnar phase, due to the aspect ratio and the low polydispersity of the plate-like particles. The concentration at which phase separation occurs, increases as the range of the particle interactions is reduced. This system provides an interesting model for comparison with theory and calculations of structures in liquid crystal and mesophase in which the particle interactions can be altered. Received 24 February 1999  相似文献   

12.
D. Horn 《Physics Reports》1980,67(1):103-107
We discuss the Z(2) theory using a hamiltonian formulation and emphasize the roles of gauge invariance and duality. Whereas the phases of the pure gauge theory can be characterized as electric-or magnetic-confining, one finds that in the presence of matter the two resulting phases can be characterized as matter-or gauge-screening. We investigate their properties by considering the exact vacua at the limiting points of the parameter space. Using such vacua in a mean-field approach we display the existence of a finite line of first-order phase transitions in the matter-screening phase and discuss its physical meaning.  相似文献   

13.
The phase structure of a class of two-dimensional spin models with three-body interactions defined on a triangular lattice is studied. This class of models, containing the Baxter-Wu model as a special case, is shown to share the duality properties of a wide class of spin theories in two and three dimensions and the Z(N) gauge theory in four dimensions. Like these models, our theory is shown to possess a massless, Kosterlitz-Thouless-like phase when the number of available spin states exceeds a critical value.  相似文献   

14.
Colloidal suspensions of charged latex microspheres in water exhibit liquid-like or crystalline ordering depending on particle interaction and concentration. By virtue of large particle spacing and slow dynamics, colloidal systems offer a unique opportunity to study interfacial structure and dynamics. This paper presents the first reported experimental study of the nucleation rate density, c, of an nonequilibrium (supercooled) colloidal liquid to colloidal crystal first order phase transition. Local and global observations of colloidal crystals growing from a metastable colloidal liquid were used to determine c. Microscopic local observations revealed homogeneous nucleation and constant interface velocity growth of quasispherical crystallites in the bulk and heterogeneous nucleation of a crystalline sheet with lower growth velocity at the cell wall. Complementary global observations of the recrystallization transition made by measuring the time dependence of the suspension transparency (the fraction of transmitted laser light) determined c by fitting this curve to a model based on an extension of Avrami's theory of crystallization.  相似文献   

15.
Density functional theory (DFT) of freezing has been used to investigate the freezing transitions in a system of colloidal particles confined to a two-dimensional plane. The particles interact via a model Hertzian type potential of varying softness. The pair-correlation functions (PCFs) needed as input structural information in DFT are calculated by solving hypernetted chain (HNC) integral equation theory. The PCFs thus obtained have been compared with those obtained through experiment and simulations and are found to be in good qualitative agreement. We found that the PCFs are sensitive to the softness of the potential: showing splitting of pair-correlation peak in the harder case and anomalous non-monotonic density dependence in the softer case. Using the common tangent construction method, we have also proposed the fluid-triangular solid phase diagrams in the temperature-density plane. We found that the phase diagram exhibit solid-fluid coexistence region whose thickness decreases with the increasing temperature as well as with increasing softness of the potential. In the temperature and density range of our calculation, DFT fails to produce any reentrance in the phase diagram.  相似文献   

16.
We study grain-boundary fluctuations in two-dimensional colloidal crystals in real space and time using video microscopy. The experimentally obtained static and dynamic correlation functions are very well described by expressions obtained using capillary wave theory. This directly leads to values for the interfacial stiffness and the interface mobility, the key parameters in curvature-driven grain-boundary migration. Furthermore, we show that the average grain-boundary position exhibits a one-dimensional random walk as recently suggested by computer simulations [Z. T. Trautt, M. Upmanyu, and A. Karma, Science 314, 632 (2006)]. The interface mobility determined from the mean-square displacement of the average grain-boundary position is in good agreement with values inferred from grain-boundary fluctuations.  相似文献   

17.
A recent theoretical analysis [B. V. R. Tata and N. Ise, Phys. Rev. E 58, 2237 (1998)] of interactions and phase transitions in charge-stabilized colloidal suspensions made reference to our previously published measurements [J. C. Crocker and D. G. Grier, Phys. Rev. Lett. 73, 352 (1994); 77, 1897 (1996); A. E. Larson and D. G. Grier, Nature (London) 385, 230 (1997)] of colloidal interactions. Tata and Ise claim that our measurements cannot distinguish between predictions of the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory and those of the competing theory due to Sogami and Ise (SI). We demonstrate that the DLVO theory accurately describes the measured interactions between isolated pairs of like-charged spheres, while the SI theory fails both quantitatively and qualitatively to describe our data.  相似文献   

18.
19.
We study superfluid and Mott insulator phases of cold spin-1 Bose atoms with antiferromagnetic interactions in an optical lattice, including a usual polar condensate phase, a condensate of singlet pairs, a crystal spin nematic phase, and a spin singlet crystal phase. We suggest a possibility of exotic fractionalized phases of spinor Bose-Einstein condensates and discuss them in the language of Z2 lattice gauge theory.  相似文献   

20.
The QCD deconfinement phase transition in pure SU(3) gauge theory is studied on an anisotropic lattice. The critical temperature is determined to be Tc ≈ 285 MeV. The relation between the deconfinement phase transition and the breakdown of Z(3) center symmetry is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号