首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis and biological evaluation of a series of novel Dual Aromatase-Sulfatase Inhibitors (DASIs) are described. It is postulated that dual inhibition of the aromatase and steroid sulfatase enzymes, both responsible for the biosynthesis of oestrogens, will be beneficial in the treatment of hormone-dependent breast cancer. The compounds are based upon the Anastrozole aromatase inhibitor template which, while maintaining the haem ligating triazole moiety crucial for enzyme inhibition, was modified to include a phenol sulfamate ester motif, the pharmacophore for potent irreversible steroid sulfatase inhibition. Adaption of a synthetic route to Anastrozole was accomplished via selective radical bromination and substitution reactions to furnish a series of aromatase inhibitory pharmacophores. Linking these fragments to the phenol sulfamate ester moiety employed SN2, Heck and Mitsunobu reactions with phenolic precursors, from where the completed DASIs were achieved via sulfamoylation. In vitro, the lead compound, 11, had a high degree of potency against aromatase (IC50 3.5 nM), comparable with that of Anastrozole (IC50 1.5 nM) whereas, only moderate activity against steroid sulfatase was found. However, in vivo, 11 surprisingly exhibited potent dual inhibition.Compound 11 was modelled into the active site of a homology model of human aromatase and the X-ray crystal structure of steroid sulfatase.  相似文献   

2.
We report an application of the multidetachable sulfamate linker in the synthesis of two model libraries of N-derivatized 17alpha-piperazinomethyl estradiols (phenols and sulfamates) by solid-phase parallel chemistry. The solid-phase precursor, a 3-sulfamoyl-17alpha-(N-trifluoroacetyl-piperazinomethyl) estradiol, was synthesized in solution from estrone and loaded efficiently onto trityl chloride resin as polymeric support. After cleavage of the trifluoroacetyl protecting group, sequential acylation reactions with five Fmoc-protected amino acids and five carboxylic acids were performed to introduce two levels of molecular diversity. Finally, the resins were split into two parts, and acidic (5% trifluoroacetic acid in dichloromethane) and nucleophilic (piperazine in tetrahydrofuran) cleavages were used to generate libraries A (5 x 5 sulfamates) and B (5 x 5 phenols) members in overall yields of 18-66% and high HPLC purities (87-96%) without purification steps. A preliminary screening test for inhibition of steroid sulfatase showed that the phenols were clearly weaker inhibitors, as compared to their sulfamate analogues. The most potent inhibitors were those with suitable hydrophobic amino acid and carboxylic acid substituents. Thus, compounds with a phenylalanine residue as the first element of diversity inhibited over 90% of steroid sulfatase activity at a concentration of 1 nM in homogenates of HEK-293 transfected cells, being as potent as the leading inhibitor 17alpha-tert-butylbenzyl estradiol 3-O-sulfamate previously reported. These results suggest that the steroid sulfatase inhibitory potency of estradiol derivatives, sulfamoylated or not, can be increased by the hydrophobic effect of a suitable substituent introduced in the proximity of the D ring of the steroid. The present work also demonstrated the efficiency and the cleavage versatility of the sulfamate linker to generate libraries of compounds with relevant biological importance, phenols and sulfamates.  相似文献   

3.
BACKGROUND: There is now abundant evidence that inhibition of steroid sulphatase alone or in conjunction with inhibition of aromatase may enhance the response of postmenopausal patients with hormone-dependent breast cancer to this type of endocrine therapy. Additionally, sulphatase inhibition has been proposed to be of potential therapeutic benefit in the immune system and for neuro-degenerative diseases. After the finding that our first highly potent active site-directed steroid sulphatase inhibitor, oestrone-3-O-sulphamate (EMATE), was highly oestrogenic, we proposed non-steroidal coumarin sulphamates such as 4-methylcoumarin-7-O-sulphamate (COUMATE) as alternative non-steroidal steroid sulphatase inhibitors. In this work, we describe how tricyclic coumarin-based sulphamates have been developed which are even more potent than COUMATE, are non-oestrogenic and orally active. We also discuss potential mechanisms of action. RESULTS: 4-Ethyl- (4), 4-(n-propyl)- (6), 3-ethyl-4-methyl- (8), 4-methyl-3-(n-propyl)coumarin-7-O-sulphamate (11); the tricyclic derivatives 665COUMATE (13), 666COUMATE (15), 667COUMATE (17), 668COUMATE (20) and the tricyclic oxepin sulphamate (22) were synthesised. In a placental microsome preparation, all of these analogues were found to be more active than COUMATE in the inhibition of oestrone sulphatase, with the most potent inhibitor being 667COUMATE which has an IC(50) of 8 nM, some 3-fold lower than that for EMATE (25 nM). In addition, 667COUMATE was also found to inhibit DHEA-sulphatase some 25-fold more potently than EMATE in a placental microsome preparation. Like EMATE, 667COUMATE acts in a time- and concentration-dependent manner, suggesting that it is an active site-directed inhibitor. However, in contrast to EMATE, 667COUMATE has the important advantage of not being oestrogenic. In addition, we propose several diverse mechanisms of action for this active site-directed steroid sulphatase inhibitor in the light of recent publications on the crystal structures of human arylsulphatases A and B and the catalytic site topology for the hydrolysis of a sulphate ester. CONCLUSIONS: A highly potent non-steroidal, non-oestrogenic and irreversible steroid sulphatase inhibitor has been developed. Several mechanisms of action for an active site-directed steroid sulphatase inhibitor are proposed. With 667COUMATE now in pre-clinical development for clinical trial, this should allow the biological and/or clinical significance of steroid sulphatase inhibitors in the treatment of postmenopausal women with hormone-dependent breast cancer and other therapeutic indications to be fully evaluated.  相似文献   

4.
The hydrolysis of N-methyl O-phenyl sulfamate (1) has been studied as a model for steroid sulfatase inhibitors such as Coumate, 667 Coumate, and EMATE. At neutral pH, simulating physiological conditions, hydrolysis of 1 involves an intramolecular proton transfer from nitrogen to the bridging oxygen atom of the leaving group. Remarkably, this proton transfer is estimated to accelerate the decomposition of 1 by a factor of 10(11). Examination of existing kinetic data reveals that the sulfatase PaAstA catalyzes the hydrolysis of sulfamate esters with catalytic rate accelerations of ~10(4), whereas the catalytic rate acceleration generated by the enzyme for its cognate substrate is on the order of ~10(15). Rate constants for hydrolysis of a wide range of sulfuryl esters, ArOSO(2)X(-), are shown to be correlated by a two-parameter equation based on pK(a)(ArOH) and pK(a)(ArOSO2XH).  相似文献   

5.
6.
Palmerolide A, a 20-membered macrocyclic polyketide bearing carbamate and vinyl amide functionality, was isolated from the tunicate Synoicum adareanum collected from the vicinity of Palmer Station on the Antarctic Peninsula. Palmerolide A displays potent and selective cytotoxicity toward melanoma (UACC-66 LC50 = 0.018 muM) and appears to operate via inhibition (IC50 = 2 nM) of V-ATPase.  相似文献   

7.
The design, synthesis, and in vitro evaluation of the novel carbocycles as transition-state-based inhibitors of influenza neuraminidase (NA) are described. The double bond position in the carbocyclic analogues plays an important role in NA inhibition as demonstrated by the antiviral activity of 8 (IC50 = 6.3 microM) vs 9 (IC50 > 200 microM). Structure-activity studies of a series of carbocyclic analogues 6a-i identified the 3-pentyloxy moiety as an apparent optimal group at the C3 position with an IC50 value of 1 nM for NA inhibition. The X-ray crystallographic structure of 6h bound to NA revealed the presence of a large hydrophobic pocket in the region corresponding to the glycerol subsite of sialic acid. The high antiviral potency observed for 6h appears to be attributed to a highly favorable hydrophobic interaction in this pocket. The practical synthesis of 6 starting from (-)-quinic acid is also described.  相似文献   

8.
A library of C-16 modified artemisinin analogs was prepared and their antimalarial as well as antileishmanial activities were evaluated. Synthesis of these compounds involved the conversion of artemisinin to its phenol derivatives 7 and 12, and subsequent parallel derivatization by introducing new chemical groups through ester, carbamate, sulfate, phosphate and isourea linkages. Comparison of in vitro antimalarial activities showed that C9-beta artemisinin analogs (8a-f) are more potent than the corresponding C9-alpha diastereomers (9a-f); however, their antileishmanial activities were in the same range. Many of the 10-deoxoartemisinin analogs studied here showed promising antiparasitic activities. For example, compounds 13a-e are approximately three times more active against drug resistant W2 strain of P. falciparum, compared to artemisinin (IC(50), approximately 0.2 - 0.6 nM; cf. artemisinin = 1.6 nM). Further, a number of compounds in this series were notably leishmanicidal, with activities comparable to or better than pentamidine (e.g., 13g and 13j). Detailed in vivo studies involving these active compounds are underway to identify lead candidates for further development.  相似文献   

9.
Recently, we designed a series of novel HIV-1 protease inhibitors incorporating a stereochemically defined bicyclic fused cyclopentyl (Cp-THF) urethane as the high affinity P2-ligand. Inhibitor with this P2-ligand has shown very impressive potency against multi-drug-resistant clinical isolates. Based upon the -bound HIV-1 protease X-ray structure, we have now designed and synthesized a number of meso-bicyclic ligands which can conceivably interact similarly to the Cp-THF ligand. The design of meso-ligands is quite attractive as they do not contain any stereocenters. Inhibitors incorporating urethanes of bicyclic-1,3-dioxolane and bicyclic-1,4-dioxane have shown potent enzyme inhibitory and antiviral activities. Inhibitor (K(i) = 0.11 nM; IC(50) = 3.8 nM) displayed very potent antiviral activity in this series. While inhibitor showed comparable enzyme inhibitory activity (K(i) = 0.18 nM) its antiviral activity (IC(50) = 170 nM) was significantly weaker than inhibitor . Inhibitor maintained an antiviral potency against a series of multi-drug resistant clinical isolates comparable to amprenavir. A protein-ligand X-ray structure of -bound HIV-1 protease revealed a number of key hydrogen bonding interactions at the S2-subsite. We have created an active model of inhibitor based upon this X-ray structure.  相似文献   

10.
Steroid hormones play an essential role in a wide variety of actions in the body, such as in metabolism, inflammation, initiating and maintaining sexual differentiation and reproduction, immune functions, and stress response. Androgen, aromatase, and sulfatase pathway enzymes and nuclear receptors are responsible for steroid biosynthesis and sensing steroid hormones. Changes in steroid homeostasis are associated with many endocrine diseases. Thus, the discovery and development of novel drug candidates require a detailed understanding of the small molecule structure–activity relationship with enzymes and receptors participating in steroid hormone synthesis, signaling, and metabolism. Here, we show that simple coumarin derivatives can be employed to build cost-efficiently a set of molecules that derive essential features that enable easy discovery of selective and high-affinity molecules to target proteins. In addition, these compounds are also potent tool molecules to study the metabolism of any small molecule.  相似文献   

11.
A series of novel benzothiazole-2-thiol derivatives were synthesized and their structures determined by 1H-NMR, 13C-NMR and HRMS (ESI). The effects of all compounds on a panel of different types of human cancer cell lines were investigated. Among them, pyridinyl-2-amine linked benzothiazole-2-thiol compounds 7d, 7e, 7f and 7i exhibited potent and broad-spectrum inhibitory activities. Compound 7e displayed the most potent anticancer activity on SKRB-3 (IC(50) = 1.2 nM), SW620 (IC(50) = 4.3 nM), A549 (IC(50) = 44 nM) and HepG2 (IC(50) = 48 nM) and was found to induce apoptosis in HepG2 cancer cells.  相似文献   

12.
To improve the in vitro and in vivo potency of our first low molecular weight GPIIb/IIIa antagonist 1 (TAK-029), a series of 2-[4-[2-(4-amidinobenzoylamino)-2-(substituted)acetyl]-3-(2-methoxy-2-oxoethyl)-2-oxopiper-azinyllacetic acids were synthesized through modification of the glycine moiety of 1 and evaluated for their ability to inhibit in vitro adenosine 5'-diphosphate (ADP)-induced platelet aggregation of guinea pig platelet rich plasma (PRP). Among the compounds examined, the (3S,2S)-4-methoxyphenylalanine derivative 4h showed the most potent antagonistic activity with an IC50 value of 13 nM. Dose-dependent inhibition of ex vivo platelet aggregation was achieved with oral administration of 4h (0.3-1.0 mg/kg) to guinea pigs. Complete inhibition was observed for up to 8 h, and 43% inhibition could still be observed 24 h after oral administration of 1.0 mg/kg. The long-lasting antiplatelet effect of 4h suggests that 4h would be suitable for once-a-day dosing. Structure-activity relationships (SAR) were examined in the series of the phenylalanine derivatives. An increase in the electron density around the 4-position of the phenyl ring of the phenylalanine moiety led to an increase in the antiplatelet activity, suggesting the existence of a hydrophobic and electrostatic interaction site in addition to the ionic binding sites in the GPIIb/IIIa.  相似文献   

13.
A series of aminoglycoside-capped macrocyclic structures has been prepared using intramolecular bis-tethering of neomycin on three aromatic platforms (phenanthroline, acridine, quinacridine). Based on NMR and calculations studies, it was found that the cyclic compounds adopt a highly flexible structure without conformational restriction of the aminoglycoside moiety. FRET-melting stabilization measurements showed that the series displays moderate to high affinity for the G4-conformation of human telomeric repeats, this effect being correlated with the size of the aromatic moiety. In addition, a FRET competition assay evidenced the poor binding ability of all macrocycles for duplex DNA and a clear binding preference for loop-containing intramolecular G4 structures compared to tetramolecular parallel G4 DNA. Finally, TRAP experiments demonstrated that the best G4-binder (quinacridine ) is also a potent and selective telomerase inhibitor with an IC(50) in the submicromolar range (200 nM).  相似文献   

14.
We designed a series of 2-methylpyrimidine derivatives as new BCR-ABL inhibitors using scaffold-hopping strategy.These synthetic compounds exhibited significant inhibition against a broad spectrum of Bcr-Abl mutants including the gatekeeper T315I mutant.Compound 7u showed very potent kinase inhibitory activities against Bcr-Abl WT,Bcr-Abl E255K,Bcr-Abl Q252H,Bcr-Abl G250E and Bcr-Abl T315I,with IC50 values of 0.13 nM,0.17 nM,0.24 nM,0.19 nM and 0.65μM,respectively.This compound also displayed anti-proliferation activity against K562 cell line with an IC50 value of 1.1 nM,thus representing a new lead for further optimization.  相似文献   

15.
Androst-4-ene-3,6-dione derivatives 2-4 and 3 alpha-methoxy-4-en-6-one steroid 7 were prepared and tested for their ability to inhibit aromatase in human placental microsomes. The 16 alpha-bromide 2, the 16 alpha-alcohol 3, and the 3 alpha-methoxide 7 of this series were effective competitive inhibitors of aromatase with apparent Ki's of 150 nM, 1.18 microM, and 700 nM. Compound 2 caused a time-dependent, biphasic loss of aromatase activity in the presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH) while compound 7 caused a time-dependent, pseudo-first order inactivation of the activity, with kinact's of 0.417 and 0.036 min-1 for compounds 2 and 7. NADPH and oxygen were required for the time-dependent inactivation and the substrate, androst-4-ene-3,17-dione, prevented it in each case.  相似文献   

16.
[reaction: see text] Sulfamate derivatives were loaded on trityl chloride resin, and two variants of cleavage were developed for this sulfamate anchor: an acid treatment to easily restore the free sulfamate and a nucleophilic treatment to generate the corresponding phenol. In addition to loading/cleavage assays and stability experiments, a model sequence of reactions was performed with the new sulfamate anchor to show its applicability in further combinatorial solid-phase synthesis of libraries of biologically relevant sulfamate derivatives.  相似文献   

17.
In search of a dopamine D2 and serotonin 5-HT3 receptors dual antagonist as a potential broad antiemetic agent, a number of benzamides were prepared from 4-amino-5-chloro-2-methoxybenzoic acid derivatives and 6-amino-1,4-dialkylhexahydro-1,4-diazepines and evaluated for their binding affinity for the dopamine D2 and the serotonin 5-HT3 receptors using rat brain synaptic and rat cortical membranes, respectively. From the results of both in vitro receptor binding and in vivo biological assays for the dopamine D2 receptor, 1-ethyl-4-methylhexahydro-1,4-diazepine ring was selected as an optimum amine moiety. Introduction of one methyl group on the nitrogen atom at the 4-position and/or modification of the substituent at the 5-position of the 4-amino-5-chloro-2-methoxybenzoyl moiety caused a marked increase in the dopamine D2 receptor binding affinity along with a potent 5-HT3 receptor binding affinity. Among the compounds, 5-chloro-N-(1-ethyl-4-methylhexahydro-1,4-diazepin-6-yl)-2-methoxy-4-methylaminobenzamide (82), 5-bromo (110), and 5-iodo (112) analogues exhibited a much higher affinity for the dopamine D2 receptor than that of metoclopramide (IC50=17.5-61.0 nM vs. 483 nM). In particular, 82 showed a potent antagonistic activity for both receptors in vivo tests. Optical resolution of the racemate 82 brought about a dramatic change in the pharmacological profile with the (R)-enantiomer exhibiting a strong affinity for both the dopamine D2 and the 5-HT3 receptors, while the corresponding (S)-enantiomer had a potent and selective serotonin 5-HT3 receptor binding affinity.  相似文献   

18.
The total synthesis and stereochemical assignment of the potent antitumor macrolide lobatamide C, as well as synthesis of simplified lobatamide analogues, is reported. Cu(I)-mediated enamide formation methodology has been developed to prepare the highly unsaturated enamide side chain of the natural product and analogues. A key fragment coupling employs base-mediated esterification of a beta-hydroxy acid and a salicylate cyanomethyl ester. Three additional stereoisomers of lobatamide C have been prepared using related synthetic routes. The stereochemistry at C8, C11, and C15 of lobatamide C was assigned by comparison of stereoisomers and X-ray analysis of a crystalline derivative. Synthetic lobatamide C, stereoisomers, and simplified analogues have been evaluated for inhibition of bovine chromaffin granule membrane V-ATPase. The salicylate phenol, enamide NH, and ortho-substitution of the salicylate ester have been shown to be important for V-ATPase inhibitory activity.  相似文献   

19.
In a continuing effort to obtain more potent platelet activating factor (PAF) antagonists, we tried to synthesize a series of PAF-sulfonamide isosteres in which the substituent at the 2-position was modified to an acetoxy equivalent other than the methoxy group. These modifications produced highly active PAF antagonists. Compound 3-[2-(5-methyl-2H-tetrazol-2-yl)-3-(octadecylcarbamoyloxy) propylaminosulfonyl]propylquinolinium iodide (52) showed the most potent activity in the in vitro inhibitory effect on PAF-induced platelet aggregation in rabbit platelet-rich plasma (IC50 = 125 nM) and also in the in vivo protective effect on PAF-induced lethality in mice, with prolonged duration of action. Optically active enantiomers of this compound were synthesized and the (S)-(-)-isomer (IC50 = 87 nM) was found to be three times more potent that the (R)-(+)-isomer (IC50 = 289 nM), clearly exemplifying the enantioselectivity in the PAF-antagonist action of this novel compound.  相似文献   

20.
A new series of 8-methoxy-2-trimethoxyphenyl-3-substituted quinazoline-4(3)-one compounds were designed, synthesized, and screened for antitumor activity against three cell lines, namely, Hela, A549, and MDA compared to docetaxel as reference drug. The molecular docking was performed using Autodock Vina program and 20 ns molecular dynamics (MD) simulation was performed using GROMACS 2018.1 software. Compound 6 was the most potent antitumor of the new synthesized compounds and was evaluated as a VEGFR2 and EGFR inhibitor with (IC50, 98.1 and 106 nM respectively) compared to docetaxel (IC50, 89.3 and 56.1 nM respectively). Compounds 2, 6, 10, and 8 showed strong cytotoxic activities against the Hela cell line with IC50 of, 2.13, 2.8, 3.98, and 4.94 µM, respectively, relative to docetaxel (IC50, 9.65 µM). Compound 11 showed strong cytotoxic activity against A549 cell line (IC50, 4.03 µM) relative to docetaxel (IC50, 10.8 µM). Whereas compounds 6 and 9 showed strong cytotoxic activity against MDA cell line (IC50, 0.79, 3.42 µM, respectively) as compared to docetaxel (IC50, 3.98 µM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号