首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A computerized adiabatic calorimeter for heat capacity measurements in the temperature range 80–400 K has been constructed. The sample cell of the calorimeter, which is about 50 cm3 in internal volume, is equipped with a platinum resistance thermometer and surrounded by an adiabatic shield and a guard shield. Two sets of 6-junction chromel-copel thermocouples are mounted between the cell and the shields to indicate the temperature differences between them. The adiabatic conditions of the cell are automatically controlled by two sets of temperature controller. The reliability of the calorimeter was verified through heat capacity measurements on the standard reference material α-Al2O3. The results agreed well with those of the National Bureau of Standards (NBS): within ±0.2% throughout the whole temperature region. The heat capacities of high-purity graphite and polystyrene were precisely measured in the interval 260–370 K by using the above-mentioned calorimeter. The results were tabulated and plotted and the thermal behavior of the two materials was discussed in detail. Polynomial expressions for calculation of the heat capacities of the two substances are presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
A fully automated adiabatic calorimeter controlled on line by a computer used for heat capacity measurements in the temperature range from 80 to 400 K was constructed. The hardware of the calorimetric system consisted of a Data Acquisition/Switch Unit, 34970A Agilent, a 7 1/2 Digit Nano Volt /Micro Ohm Meter, 34420A Agilent, and a P4 computer. The software was developed according to modern controlling theory. The adiabatic calorimeter consisted mainly of a sample cell equipped with a miniature platinum resistance thermometer and an electric heater, two (inner and outer) adiabatic shields, two sets of six junction differential thermocouple piles and a high vacuum can. A Lake Shore 340 Temperature Controller and the two sets of differential thermocouples were used to control the adiabatic conditions between the cell and its surroundings. The reliability of the calorimeter was verified by measuring the heat capacities of synthetic sapphire (α-Al2O3), Standard Reference Material 720. The deviation of the data obtained by this calorimeter from those published by NIST was within ±0.1% in the temperature range from 80 to 400 K.  相似文献   

3.
An automatic adiabatic calorimeter for measuring heat capacities in the temperature range 70-580 K, equipped with a small sample cell of 7.4 cm3 in the internal volume has been developed. In order to obtain a good adiabatic condition of the calorimeter at high temperature, the calorimeter was surrounded in sequence by two adiabatic shields, three radiation shields and an auxiliary temperature-controlled sheath. The main body of the cell made of copper and the lid made of brass are silver-soldered and the cell is sealed with a copper screw cap. A sealing gasket made of Pb-Sn alloy is put between the cap and the lid to ensure a high vacuum sealing of the cell in the whole experimental temperature range. All the leads are insulated and fixed with W30-11 varnish, thus a good electric insulation is obtained at high temperature. All the experimental data, including those for energy and temperature are collected and automatically with a personal computer using a predetermined program. To verify the accuracy of the calorimeter, the heat capacities of α-Al2O3 of the calorimetric standard reference material is measured. The standard deviations of experimental heat capacity values from the smoothed values are within ± 0.28%, while the inaccuracy is within ±0.4% compared with those of the National Bureau of Standards over the entire working temperature range. Project supported by the National Natural Science Foundation of China (Grant No. 29573133).  相似文献   

4.
通过小样品精密自动绝热量热计测定了自己合成并提纯的苯氧威 (C17H19NO4) 在79 ~ 360 K温区的低温摩尔热容。量热实验发现, 该化合物在320 ~ 330 K温区, 有一固 - 液熔化相变过程, 其熔化温度为(326.31±0.14)K, 摩尔熔化焓、摩尔熔化熵及化合物的纯度分别为:(26.98±0.04) kJ• mol-1和(82.69 0.09)J•mol-1•K-1和 (99.53±0.01 )%。并计算出了80-360 K的热力学参数。用分步熔化法得到绝对纯化和物的熔点为326.60±0.06 K。用差示扫描量热 (DSC) 技术对该物质的固-液熔化过程作了进一步研究,结果与绝热量热法一致。  相似文献   

5.
近几十年来,烟酸盐类化合物或配合物由于优越的吸收率高和无毒副作用等特点使其在化妆品、药品和食品等领域作为营养添加剂具有重要应用前景。然而,这类化合物的基础热力学数据极其缺乏,从而限制了这类化合物的理论研究和应用开发的深入开展。为此,本论文利用室温固相合成方法和球磨技术合成了一种新化合物Cu(Nic)2•H2O(s),利用化学分析、元素分析、FTIR和X-射线粉末衍射技术表征了它的结构和组成,利用精密自动绝热热量计准确地测量了它在78-400 K温区的摩尔热容。在热容曲线的T = 326-346 K温区观察到一个明显的固-液相变过程。利用相变温区三次重复实验热容的测量结果确定了此相变过程的峰温、相变焓和相变熵分别为:Tfus=(341.290 ±0.873) K, DfusHm=(13.582±0.012) kJ×mol-1, DfusSm=(39.797±0.067) J×K-1×mol-1。通过最小二乘法将相变前和相变后的热容实验值分别拟合成了热容对温度的两个多项式方程。通过热容多项式方程的数值积分,得到了这个化合物的舒平热容值和相对于298.15 K的各种热力学函数值,并且将每隔5 K的热力学函数值列成了表格。  相似文献   

6.
The low-temperature heat capacities of cyclohexane were measured in the temperature range from 78 to 350 K by means of an automatic adiabatic calorimeter equipped with a new sample container adapted to measure heat capacities of liquids. The sample container was described in detail. The performance of this calorimetric apparatus was evaluated by heat capacity measurements on water. The deviations of experimental heat capacities from the corresponding smoothed values lie within ±0.3%, while the inaccuracy is within ±0.4%, compared with the reference data in the whole experimental temperature range. Two kinds of phase transitions were found at 186.065 and 279.684 K corresponding solid-solid and solid-liquid phase transitions, respectively. The entropy and enthalpy of the phase transition, as well as the thermodynamic functions {H(T)-H 298.15 K} and {S (T)-S298.15 K}, were derived from the heat capacity data. The mass fraction purity of cyclohexane sample used in the present calorimetric study was determined to be 99.9965% by fraction melting approach. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
通过小样品精密自动绝热热量计测定了自己合成并提纯的腈菌唑 (C15H17ClN4) 在78 ~ 368K温区的低温摩尔热容。量热实验发现, 该化合物在363 ~ 372 K温区, 有一固-液熔化相变过程, 其熔化温度为 (348.800±0.06)K, 摩尔熔化焓、摩尔熔化熵及化合物的纯度分别为:(30931±11) J•mol-1、(88.47±0.02) J•mol-1•K-1和0.9941(摩尔分数)。用差示扫描量热(DSC) 技术对该物质的固-液熔化过程作了进一步研究,结果与绝热量热法一致。  相似文献   

8.
A novel compound‐monohydrated nickel nicotinate was synthesized by the method of room temperature solid phase synthesis and ball grinder. FTIR, chemical and elemental analysis, TG/DTG, and X‐ray powder diffraction technique were applied to characterize the structure and composition of the coordination compound. Low‐temperature heat capacities of the solid coordination compound have been measured by a precision automated adiabatic calorimeter over the temperature range from 78 to 386 K. A solid‐solid phase transition occurred in the temperature range of 328–358 K in the heat capacity curve, and the peak temperature, the molar enthalpy and molar entropy of the phase transition were determined to be Ttrs=(356.759±0.697) K, ΔtrsHm=(13.650±0.408) kJ· mol?1, and ΔtrsSm= (38.279±0.086) J·K?1·mol?1, respectively. The experimental values of the molar heat capacities in the temperature ranges of 78–328 K and 358–386 K were fitted to two polynomials, respectively. The polynomial fitted values of the molar heat capacities and fundamental thermodynamic functions of the sample relative to the standard reference temperature 298.15 K were calculated and tabulated at the intervals of 5 K.  相似文献   

9.
邸友莹  史全  谭志诚  孙立贤 《化学学报》2007,65(18):1940-1946
利用精密自动绝热热量计测量了分析纯烟酸在78~400 K温区的低温热容. 用最小二乘法将实验摩尔热容对温度进行拟合, 得到了热容随温度变化的多项式方程. 用此方程进行数值积分, 得到在此温区每隔5 K的舒平热容值和相对于298.15 K时的热力学函数值. 利用精密静止氧弹燃烧热量计测定了烟酸在298.15 K时的恒体积燃烧能为 ΔcU= -(24528.3±16.1) J•g-1. 依据物质燃烧焓定义计算出烟酸的标准摩尔燃烧焓为: ΔcHmo=-(3019.05±1.98) kJ•mol-1. 最后, 依据Hess定律计算出烟酸的标准摩尔生成焓为: ΔfHmo=-(56.76±2.13) kJ•mol-1.  相似文献   

10.
Low-temperature heat capacities of 2-chloro-N,N-dimethylnicotinamide were precisely measured with a high-precision automated adiabatic calorimeter over the temperature range from 82 K to 380 K. The compound was observed to melt at (342.15±0.04) K. The molar enthalpy AfusionHm, and entropy of fusion, △fusionSm, as well as the chemical purity of the compound were determined to be (21387±7) J·mol^-1, (62.51±0.01) J·mol^-1·K^-1, (0.9946±0.0005) mass fraction, respectively. The extrapolated melting temperature for the pure compound obtained from fractional melting experiments was (342.25±0.024) K. The thermodynamic function data relative to the reference temperature 298.15 K were calculated based on the heat capacity measurements in the temperature range from 82 to 325 K. The thermal behavior of the compound was also investigated by different scanning calorimetry.  相似文献   

11.
The temperature dependence of heat capacity of crystalline bis(η6-ethylbenzene)chromium fulleride [(η6-EtPh)2Cr]·+ [C60]·− was studied in adiabatic vacuum calorimeter in the range of 6.7 to 344 K with an error of ±0.3%. Dependence of the parameters of EPR signal of bis(η6-ethylbenzene)chromium fulleride on temperature was studied by electron paramagnetic resonance (EPR) in the range of 120 to 290 K. In the range of 204 to 246 K, upon heating, reversible endothermic transformation was recorded, which is caused by the dissociation of dimer (C60)2 and formation of fulleride [(η6-EtPh)2Cr]·+ [C60]·−; its standard thermodynamic parameters were estimated and analyzed. Standard thermodynamic functions were calculated by the experimental data obtained: heat capacity, enthalpy, entropy, and Gibbs function of fulleride dimmer in the range of T → 0 to 204 K and monomer complex [(η6-EtPh)2Cr]·+ [C60]·− in the range of 246 to 344 K. Standard thermodynamic properties of fulleride under study, fullerides studied earlier, and fullerite C60 were compared.  相似文献   

12.
Low‐temperature heat capacities of gramine (C11H14N2) were measured by a precision automated adiabatic calorimeter over the temperature range from 78 to 401 K. A polynomial equation of heat capacities as a function of temperature was fitted by least squares method. Based on the fitted polynomial, the smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated and tabulated at 5 K intervals. The constant‐volume energy of combustion of the compound at T=298.15 K was measured by a precision oxygen‐bomb combustion calorimeter as ΔcU=−(35336.7±13.9) J·g−1. The standard molar enthalpy of combustion of the compound was determined to be ΔcHm0=−(6163.2±2.4) kJ·mol−1, according to the definition of combustion enthalpy. Finally, the standard molar enthalpy of formation of the compound was calculated to be Δ;cHm0=−(166.2±2.8) kJ·mol−1 in accordance with Hess law.  相似文献   

13.
邸友莹  高胜利  谭志诚  孙立贤 《化学学报》2007,65(14):1299-1304
利用精密自动绝热热量计直接测定了配合物Zn(Met)SO4•H2O(s) 在78~370 K温区的摩尔热容. 通过热容曲线的解析得到该配合物的起始脱水温度为T0=329.50 K. 将该温区的摩尔热容实验值用最小二乘法拟合得到摩尔热容 (Cp,m)对温度(T)的多项式方程, 并且在此基础上计算出了它的舒平热容值和各种热力学函数值. 依据Hess定律, 通过设计热化学循环, 选择体积为100 cm3、浓度为2 mol•L-1的盐酸作为量热溶剂, 利用等温环境溶解-反应热量计, 测定和推算出该配合物的标准摩尔生成焓为ΔfHm0=-(2069.30±0.74) kJ•mol-1.  相似文献   

14.
2-氨基-4,6-二甲氧基嘧啶的低温热容和热力学性质研究   总被引:3,自引:0,他引:3  
通过精密自动绝热量热计测定了自行合成并提纯的2-氨基-4,6-二甲氨基嘧啶 在78-394 K温区的摩尔热容。实验结果表明,该化合物有一个固-液溶化相变,其 熔化温度、摩尔熔化焓以及摩尔熔化熵分别为:(370.97 ± 0.02)K,(29853. 91 ± 9.25) J·mol~(-1)和(80.45 ± 0.03)J·mol~(-1) · K~(-1)。通过分 步熔化法得到样品的纯度为0.9984 (摩尔分数)和绝对纯样品的熔点为371.031 K。 在热容测量的基础上计算出了该物质每隔5K的热力学函数值。DSC技术对基固-溶熔 化过程作了进一步研究,结果与热容试验相一致。  相似文献   

15.
Lü Yinfeng 《中国化学》2010,28(4):521-530
The crystal structure and composition of (C12H25NH3)2ZnCl4(s) were characterized by chemical and elemental analysis, X‐ray powder diffraction technique and X‐ray crystallography. The lattice energy of the title compound was calculated to be UPOT=888.82 kJ·mol?1. Low temperature heat capacities of the title compound have been measured by a precision automated adiabatic calorimeter over the temperature range from 80 to 403 K. An obvious solid to solid phase transition occurred in the heat capacity curve, and the peak temperature, molar enthalpy and molar entropy of the phase transition of the compound were determined to be Ttrs= (364.02±0.03) K, (trsHm= (77.567±0.341) kJ·mol?1, and (trsSm= (213.77±1.17) J·K?1·mol?1, respectively. Experimental molar heat capacities before and after the phase transition were respectively fitted to two polynomial equations. The smoothed molar heat capacities and fundamental thermodynamic functions of the sample relative to the standard reference temperature 298.15 K were calculated and tabulated at an interval of 5 K.  相似文献   

16.
选择分析纯烟酸和无水醋酸钾为反应物, 利用室温固相合成方法, 合成了无水烟酸钾. 利用FTIR和X射线粉末衍射等方法表征了它的结构. 用精密自动绝热热量计测定了它在77~400 K温区的低温热容, 将该温区的摩尔热容实验值用最小二乘法拟合, 得到热容随温度变化的多项式方程. 用此方程进行数值积分, 得到此温区内每隔5 K的舒平热容值和相对于298.15 K时的各种热力学函数值. 在此基础上, 通过设计合理的热化学循环, 利用等温环境溶解-反应热量计分别测定固相反应的反应物和生成物在所选溶剂中的溶解焓, 从而得到该固相反应的反应焓为 (25.87±0.47) kJ•mol-1. 最后, 依据Hess定律计算出烟酸钾的标准摩尔生成焓为 =-(560.57±1.09) kJ•mol-1.  相似文献   

17.
The heat capacities of chrysanthemic acid in the temperature range from 80 to 400 K were measured with a precise automatic adiabatic calorimeter. The chrysanthemic acid sample was prepared with the purity of 0.9855 mole fraction. A solid-liquid fusion phase transition was observed in the experimental temperature range. The melting point, T m, enthalpy and entropy of fusion, Δfus H m, Δfus S m, were determined to be 390.741±0.002 K, 14.51±0.13 kJ mol-1, 37.13±0.34 J mol-1 K-1, respectively. The thermodynamic functions of chrysanthemic acid, H (T)-H(298.15), S (T)-S(298.15) and G (T)-G (298.15) were reported with a temperature interval of 5 K. The TG analysis under the heating rate of 10 K min-1 confirmed that the thermal decomposition of the sample starts at ca. 410 K and terminates at ca. 471 K. The maximum decomposition rate was obtained at 466 K. The purity of the sample was determined by a fractional melting method. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Low-temperature heat capacities of the compound Ni(C4H7O5)2·2H2O(S) have been measured with an auto- mated adiabatic calorimeter. A thermal decomposition or dehydration occurred in 350--369 K. The temperature, the enthalpy and entropy of the dehydration were determined to be (368.141 ±0.095) K, (18.809±0.088) kJ·mol ^-1 and (51.093±0.239) J·K^-1·mol^-1 respertively. The experimental values of the molar heat capacities in the temperature regions of 78-350 and 368-390 K were fitted to two polynomial equations of heat capacities (Cp,m) with the reduced temperatures (X), [X=f(T)], by a least squares method, respectively. The smoothed molar heat capacities and thermodynamic functions of the compound were calculated on the basis of the fitted polynomials. The smoothed values of the molar heat capacities and fundamental thermodynamic functions of the sample relative to the standard reference temperature 298.15 K were tabulated with an interval of 5 K.  相似文献   

19.
邸友莹  谭志诚  李彦生 《化学学报》2006,64(13):1393-1401
合成了一种稀土高氯酸盐-谷氨酸配合物. 经TG/DTG、化学和元素分析、FTIR及与相关文献对比, 确定其组成为[Pr2(L-α-Glu)2(ClO4)(H2O)7](ClO4)3•4H2O, 纯度为99.0%以上. 利用显微熔点仪分析发现其没有熔点. 在78~370 K温区, 用精密绝热量热仪测量其低温热容, 在285~306 K温区发现一明显吸热峰, 归结为固-固相变过程. 通过相变温区三次重复热容测量, 得到相变温度Ttr、相变焓ΔtrHm和相变熵ΔtrSm分别为(297.158±0.280) K, (12.338±0.016) kJ•mol-1和(41.520±0.156) J•K-1•mol-1. 用最小二乘法将非相变温区的热容对温度进行拟合, 得到了热容随温度变化的两个多项式方程. 用此方程进行数值积分, 得到每隔5 K的舒平热容值和相对于273.15 K的热力学函数值. 根据TG/DTG结果, 推测了该配合物的热分解机理. 依据Hess定律, 选择1 mol•dm-3盐酸为量热溶剂, 利用等温环境溶解-反应量热计, 测定了该配合物的标准摩尔生成焓为: ΔfHm0=-(7223.1±2.4) kJ•mol-1.  相似文献   

20.
用精密自动绝热量热计测定了苯氧乙酸嘧霉胺盐在81-380 K之间的低温热容. 结果表明, 该化合物在81-328 K之间无相变和热异常现象发生, 在328-354 K之间发生固-液熔化, 其熔化温度、摩尔熔化焓和摩尔熔化熵分别为(349.38±0.03) K, (34.279±10) kJ/mol和(98.13±0.05) J/(K·mol). 根据热力学函数关系式计算出苯氧乙酸嘧霉胺盐在80-325 K之间以标准状态(298.15 K)为基准的热力学函数值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号