首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
锂空气电池的能量密度是传统锂离子电池的5~10倍,可与汽油相媲美。近几年来,锂空气电池因此受到了人们的广泛关注。本文概述了锂空气电池正极材料和电解液的最新研究进展。从商业碳、具有特定形态的碳材料、催化剂、导电聚合物等几个方面阐述了正极材料;从物质结构的角度,简要介绍了锂空气电池中常用的酯类、醚类、砜类、胺类和离子液体等电解液。最后指出了目前锂空气电池存在的问题,并对其进行了展望。  相似文献   

2.
锂空气电池的能量密度是传统锂离子电池的5~10倍, 可与汽油相媲美。近几年来, 锂空气电池因此受到了人们的广泛关注。本文概述了锂空气电池正极材料和电解液的最新研究进展。从商业碳、具有特定形态的碳材料、催化剂、导电聚合物几个方面阐述了正极材料;从物质结构的角度, 简要介绍了锂空气电池中常用的酯类、醚类、砜类、胺类和离子液体等电解液。最后指出了目前锂空气电池存在的问题, 并对其进行了展望。  相似文献   

3.
近年来,锂-空气电池由于具有极高的理论容量和对环境友好等优势,作为“终极电池”引起了广大科研工作者和电动汽车公司的极大兴趣和广泛关注. 但目前锂-空气电池还存在着充放电过电位大、循环性能差等局限性,寻找高效的锂-空气电池催化剂成为该领域发展的研究热点之一. 锂-空气电池阴极催化剂主要有贵金属、非贵金属、碳材料以及金属氧化物等,可通过多种方法合成制备,如水热(溶剂热)法、溶胶-凝胶法、共沉淀法、静电纺丝法等等. 其中,静电纺丝技术由于具有制备方法简易、高效且产量高等优点,近年来得到了长足的发展,可以用来大量制备锂-空气电池阴极催化剂,甚至制备自支撑结构的锂-空气电池阴极催化剂材料. 本文综述了静电纺丝技术在锂-空气电池上的应用,主要包括利用静电纺丝技术制备非贵金属催化剂、碳材料催化剂、金属氧化物催化剂和复合催化剂等,以及将制备的催化剂组装成锂-空气电池后表现出的优异的电池性能.  相似文献   

4.
黄征  池波  蒲健  李箭 《化学进展》2013,(Z1):260-269
以锂为负极,空气为正极的锂-空气二次电池,由于其较高的理论能量密度(5 210 Wh.kg-1)而成为最具发展潜力的新型高能化学电源体系。通过近几年的研究和开发,人们对这一体系的了解不断深入。虽然对其电化学过程中的复杂反应机理尚没有完整系统的理论描述,但是在氧还原催化剂、空气电极材料及电解质材料等方面已开展了一些研究工作。本文综述了锂-空气电池的最新研究进展,对电池的正极材料、电解质和负极材料三个方面的研究进行了介绍,分析了该体系的缺陷及存在的问题,并展望了锂-空气电池的发展方向和前景。  相似文献   

5.
锂-空气电池被认为是最具潜力的新一代化学电源体系之一,具有能量密度高、质量轻便、可逆性高、环境污染小等优点. 但其电极上缓慢的氧还原(ORR)与氧析出(OER)动力学过程导致了能量效率降低、过电位高、循环性能差等问题,制约了锂-空气电池的发展. 双效正极催化剂的设计与开发是解决上述问题的重要途径之一. 作者通过总结近几年锂-空气电池正极催化剂的研究进展,并结合其课题组自身的工作,综述了锂-空气电池正极催化剂表界面调控及构效关系研究方面的最新进展,并展望了未来关于锂-空气电池研究的切入点,对设计、开发高效锂-空电池催化剂具有重要指导意义.  相似文献   

6.
程方益  陈军 《化学学报》2013,71(4):473-477
可充锂空气电池是当前化学电源研究热点和重点, 近年来取得了重要进展. 简要介绍了该领域在空气电极多孔纳米催化材料的设计与应用方面的最新研究成果, 讨论了碳、贵金属、氧化物三类催化材料的特征及性能, 展望了新型高效氧还原/氧析出双功能阴极纳米催化剂的发展方向.  相似文献   

7.
张栋  张存中  穆道斌  吴伯荣  吴锋 《化学进展》2012,24(12):2472-2482
由于锂空气电池具有很高的理论能量密度因而引起了广泛关注和研究。本文较为全面地论述了各种电解质体系中的锂空气电池的进展,包括:有机体系、水体系、离子液体体系、有机-水双电解质体系和全固态体系的锂空气电池;详细阐述和归纳了它们的工作原理和最新研究现状。对最新提出的锂-空气-超级电容电池的原理和特点进行了较详细的论述。结合氧气在有机电解质中的电化学还原行为指出单一有机电解质锂空气电池存在的问题以及可能的解决办法;同时展示了这类电池中空气电极催化剂的发展现状。结合双电解质锂空气电池、固态电解质锂空气电池、锂-空气-超级电容电池的结构阐述了它们各自的优缺点。本文还展示了一些可望用于单一有机电解质锂空电池、有机-水双电解质体系锂空电池的新型碳材料。最后对锂空气电池的研究发展进行了总结与展望,提出新型电解液、催化剂以及改进锂空气电池构造将会成为今后的发展趋势。  相似文献   

8.
锂-空气电池是目前已知具有最高能量密度的二次电池,有望成为未来电动汽车的动力电源。由于其能量密度高、环境友好以及成本较低,成为广大科研工作者研究的热点,在过去二十年间与之有关的研究已经在反应机理、电极结构、催化剂及电解液等各方面都取得了很大进展,但受诸多因素限制,其实用化仍然任重道远。本文总结了近几年来非水体系锂-空气电池在反应机理、正极材料、催化剂、电解液以及锂负极等方面的最新研究进展,并在此基础上展望其未来的发展方向。  相似文献   

9.
生物质碳基材料具有可调的微观结构、丰富的表面活性中心、优良的导电和导热性能以及较大的比表面积,已经成为新能源领域的重要基础材料.然而,应用于锌-空气电池中时,碳基材料高电位下的碳腐蚀问题严重影响了电池的稳定性,因此,开发具有低过电位的析氧反应(OER)催化剂来降低充电电压是解决该问题的关键.本课题组采用一种低温磷化策略制备了具有低OER过电位的P修饰的Fe3O4/Fe2N和生物质碳复合催化剂(P-Fe3O4/Fe2N@NPC),其具有较好的双功能氧反应活性,氧还原反应(ORR)的半波电位为0.86 V,仅需要280 m V的OER过电位就可以达到10 m Acm-2的电流密度.以P-Fe3O4/Fe2N@NPC作为正极组装的锌-空气电池表现出低的充放电电压差和长期稳定性,在目前报道的碳基催化剂应用于锌-空气电池中具有很大优势.此外,采用X射线光电子能谱(XPS)、拉曼光...  相似文献   

10.
李鹏  孙彦平 《化学进展》2012,24(12):2457-2471
非水系二次锂-氧电池(NRLOB)在当前所研发的二次电池中理论能量密度最高,但存在循环性能差,充、放电电流密度低等显著问题;这些问题主要同其氧正极上的电化学反应相关,关键在于过氧化锂Li2O2可逆生成、分解反应能否在较高的速率下连续地进行。本文综述了近年来NRLOB正极电化学反应机理、正极碳材料、催化剂和电极结构、电解液分解导致电极副反应等方面的研究现状;归纳了今后需要进一步研究的主要问题。  相似文献   

11.
Herein, we highlight redox‐inert Zn2+ in spinel‐type oxide (ZnXNi1?XCo2O4) to synergistically optimize physical pore structure and increase the formation of active species on the catalyst surface. The presence of Zn2+ segregation has been identified experimentally and theoretically under oxygen‐evolving condition, the newly formed VZn?O?Co allows more suitable binding interaction between the active center Co and the oxygenated species, resulting in superior ORR performance. Moreover, a liquid flow Zn–air battery is constituted employing the structurally optimized Zn0.4Ni0.6Co2O4 nanoparticles supported on N‐doped carbon nanotube (ZNCO/NCNTs) as an efficient air cathode, which presents remarkable power density (109.1 mW cm?2), high open circuit potential (1.48 V vs. Zn), excellent durability, and high‐rate performance. This finding could elucidate the experimentally observed enhancement in the ORR activity of ZnXNi1?XCo2O4 oxides after the OER test.  相似文献   

12.
Metal-air batteries (MABs) and reversible fuel cells (RFCs) rely on the bifunctional oxygen catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Finding efficient bifunctional oxygen catalysts is the ultimate goal and it has attracted a great deal of attention. The dilemma is that a good ORR catalyst is not necessarily efficient for OER, and vice versa. Thus, the development of a new type of bifunctional oxygen catalysts should ensure that the catalysts exhibit high activity for both OER and ORR. Composites with multicomponents for active centers supported on highly conductive matrices could be able to meet the challenges and offering new opportunities. In this Review, the evolution of bifunctional catalysts is summarized and discussed aiming to deliver high-performance bifunctional catalysts with low overpotentials.  相似文献   

13.
La0.3(Ba0.5Sr0.5)0.7Co0.8Fe0.2O3?δ is a promising bifunctional perovskite catalyst for the oxygen reduction reaction and the oxygen evolution reaction. This catalyst has circa 10 nm‐scale rhombohedral LaCoO3 cobaltite particles distributed on the surface. The dynamic microstructure phenomena are attributed to the charge imbalance from the replacement of A‐site cations with La3+ and local stress on Co‐site sub‐lattice with the cubic perovskite structure.  相似文献   

14.
锌-空气电池因其拥有理想的能量密度和功率密度,并有望在能源转化与储存领域的广泛应用,引起国内外研究者的高度关注. 其中,空气电极作为氧催化反应的核心区域,更是整个锌-空气电池研究的重点. 近年来,非贵金属双功能催化剂及其电极以其高活性、低成本以及种类丰富等特点取得了较多的研究成果. 本文综述了非贵金属氧化物催化剂、碳基催化剂、碳载过渡金属化合物复合材料以及自支撑电极在锌-空气电池中的反应机制和研究进展,提出了高效双功能催化剂的构建策略,并对双功能催化剂/电极的发展趋势进行了展望.  相似文献   

15.
石墨烯基催化剂的设计合成与电催化应用   总被引:2,自引:1,他引:1  
为了解决能源匮乏和环境污染的问题,研究人员正致力于寻找清洁可持续的新能源。 其中,氧气还原、氧气析出、析氢反应等是紧密联系新型清洁能源获取和存贮的重要电化学反应。 为了提高其能量转化效率,电催化剂(如碳载铂Pt/C)被广泛地用于降低其反应活化能、提高能量转化效率。 近年来,石墨烯作为一种具有高比表面积和优异导电性的二维碳材料受到了广泛关注。 通过表面杂原子掺杂、缺陷调控和引入催化活性组分等方式,获得了催化性能与贵金属催化剂相媲美,且低价格和高稳定性的非贵金属石墨烯基催化材料。 针对氧气还原、氧气析出和析氢反应在燃料电池、金属-空气电池和电催化水分解中的应用,本文概括综述了通过表/界面结构性质调控提高石墨烯电催化性能和稳定性,获得具有双功能或复合催化性能的石墨烯基催化剂的最新研究进展。 最后总结和展望了亟待解决的问题及未来的发展趋势。  相似文献   

16.
为了研发高效、稳定的电解水催化剂,我们以氧空位和磷掺杂为基础,通过原位浸泡生长和两步热处理的方法,在泡沫铁上合成具有氧空位和磷掺杂的纳米花结构作为析氢反应(HER)和析氧反应(OER)双功能电催化剂。CoFe2O4已被报道为一种很有前途的OER和氧还原反应(ORR)电催化剂,然而CoFe2O4在HER中表现出电导率差、电催化反应慢的特性。CoFe2O4中氧空位(Ov)的形成可以有效调控催化剂表面的电子结构,有助于产生更多的缺陷和空位,从而提高OER的活性。随后,引入磷原子填充在空位中,制备的P-Ov-CoFe2O4/IF在碱性电催化测试中展现出优异的HER和OER性能,在10 mA·cm-2电流密度下HER和OER过电位仅为54和191 mV,Tafel斜率分别为57和54 mV·dec-1,并具有良好的循环稳定性。  相似文献   

17.
Two-dimensional metal-organic frameworks (2D MOFs) inherently consisting of metal entities and ligands are promising single-atom catalysts (SACs) for electrocatalytic chemical reactions. Three 2D Fe-MOFs with NH, O, and S ligands were designed using density functional theory calculations, and their feasibility as SACs for hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) was investigated. The NH, O, and S ligands can be used to control electronic structures and catalysis performance in 2D Fe-MOF monolayers by tuning charge redistribution. The results confirm the Sabatier principle, which states that an ideal catalyst should provide reasonable adsorption energies for all reaction species. The 2D Fe-MOF nanomaterials may render highly-efficient HER, OER, and ORR by tuning the ligands. Therefore, we believe that this study will serve as a guide for developing of 2D MOF-based SACs for water splitting, fuel cells, and metal-air batteries.  相似文献   

18.
A bifunctional oxygen electrocatalyst composed of iron carbide (Fe3C) nanoparticles encapsulated by nitrogen doped carbon sheets is reported. X‐ray photoelectron spectroscopy and X‐ray absorption near edge structure revealed the presence of several kinds of active sites (Fe?Nx sites, N doping sites) and the modulated electron structure of nitrogen doped carbon sheets. Fe3C@N‐CSs shows excellent oxygen evolution and oxygen reduction catalytic activity owing to the modulated electron structure by encapsulated Fe3C core via biphasic interfaces electron interaction, which can lower the free energy of intermediate, strengthen the bonding strength and enhance conductivity. Meanwhile, the contribution of the Fe?Nx sites, N doping sites and the effect of Fe3C core for the electrocatalytic oxygen reaction is originally revealed. The Fe3C@N‐CSs air electrode‐based zinc‐air battery demonstrates a high open circuit potential of 1.47 V, superior charge‐discharge performance and long lifetime, which outperforms the noble metal‐based zinc‐air battery.  相似文献   

19.
Li-O2 batteries are promising energy storage systems due to their ultra-high theoretical capacity. However, most Li-O2 batteries are based on the reduction/oxidation of Li2O2 and involve highly reactive superoxide and peroxide species that would cause serious degradation of cathodes, especially carbon-based materials. It is important to explore lithium-oxygen reactions and find new Li-O2 chemistry which can restrict or even avoid the negative influence of superoxide/peroxide species. Here, inspired by enzyme-catalyzed oxygen reduction/oxidation reactions, we introduce a copper(I) complex 3 N-CuI (3 N=1,4,7-trimethyl-1,4,7-triazacyclononane) to Li-O2 batteries and successfully modulate the reaction pathway to a moderate one on reversible cleavage/formation of O−O bonds. This work demonstrates that the reaction pathways of Li-O2 batteries could be modulated by introducing an appropriate soluble catalyst, which is another powerful choice to construct better Li-O2 batteries.  相似文献   

20.
For rechargeable metal–air batteries, which are a promising energy storage device for renewable and sustainable energy technologies, the development of cost-effective electrocatalysts with effective bifunctional activity for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has been a challenging task. To realize highly effective ORR and OER electrocatalysts, we present a hybrid catalyst, Co3O4-infiltrated La0.5Sr0.5MnO3-δ (LSM@Co3O4), synthesized using an electrospray and infiltration technique. This study expands the scope of the infiltration technique by depositing ~18 nm nanoparticles on unprecedented ~70 nm nano-scaffolds. The hybrid LSM@Co3O4 catalyst exhibits high catalytic activities for both ORR and OER (~7 times, ~1.5 times, and ~1.6 times higher than LSM, Co3O4, and IrO2, respectively) in terms of onset potential and limiting current density. Moreover, with the LSM@Co3O4, the number of electrons transferred reaches four, indicating that the catalyst is effective in the reduction reaction of O2 via a direct four-electron pathway. The study demonstrates that hybrid catalysts are a promising approach for oxygen electrocatalysts for renewable and sustainable energy devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号