首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
康淳  林延欣  景远聚  王新波 《化学进展》2022,34(10):2239-2253
MXenes是一类新型的二维过渡金属碳/氮化物或碳氮化物,是由Mn+1AXn相物质(MAX相)通过剥离而得到的单层或薄层纳米片。独特的二维层状结构、较大的比表面积以及出色的导电性、机械稳定性和磁性等性能,使MXenes迅速成为研究热点,并已广泛应用于储能、催化、吸附等众多领域。本文总结介绍了二维材料MXenes的制备方法,并重点综述其近年来在环境领域的应用研究进展,如吸附重金属、吸附放射性金属、吸附有机物、二氧化碳的选择性吸附、光催化、电催化、膜分离、传感器、生物活性、电磁吸收与屏蔽等进行了总结与回顾,最后对现阶段存在的问题和未来发展进行了分析。  相似文献   

2.
在电子信息和物联网技术的推动下,人类对可穿戴电子器件和智能织物的需求愈发突出,功能纤维作为智能可穿戴设备的重要载体,近年来获得快速发展。功能纤维的性能很大程度上取决于纤维的基础构筑单元。过渡金属碳/氮化物(MXenes)作为一种新兴的二维材料,凭借其高电导率、优异的可加工性能、可调节的表面特性以及出色的机械强度等优点,受到了极大的关注,也逐渐成为构筑功能纤维的重要单元。本文将主要综述MXenes的湿化学、熔融盐、无氟试剂刻蚀等方法和力学、电学、光学和化学稳定性等性能,阐述基于该材料制备的功能纤维在传感、储能以及其他智能领域的应用,最后讨论了基于MXenes材料的功能纤维的未来应用前景和技术挑战。  相似文献   

3.
MXene作为一种拥有层状结构的二维材料,具有良好的吸附催化性能、较宽的光吸收范围、高导热性、高硬度、高熔点、高导电性以及大比表面积等物理和化学特性,在储能、催化、润滑、抗菌、电磁屏蔽等领域有着较高应用价值。本文着重介绍了由前驱体MAX相获得MXene的制备方法,综述了MXene复合材料在光催化固氮、析氢、CO2还原等能源光催化领域的应用进展。  相似文献   

4.
新型二维纳米材料在电化学领域的应用与发展   总被引:1,自引:0,他引:1  
以石墨烯为代表的新型二维纳米材料具有独特的结构和优异的电子特性,在电化学各领域具有巨大的应用潜力。 本综述总结了新型二维纳米材料在电化学各领域(能源存储、能源转化和电化学传感)的研究现状和存在的问题。 展望了二维纳米材料在电化学领域的发展趋势。  相似文献   

5.
电子鼻结合人工智能对呼出气进行检测、分析和识别已成为非侵入性医疗检测领域的研究热点.然而,目前已报道的气体传感材料尚不能同时满足高灵敏度、高选择性和稳定的室温检测,阻碍了气体传感器在医疗健康领域的应用及发展,寻找合适的传感材料具有重要的意义和挑战.新型二维层状纳米材料MXenes具有种类多、比表面积大、导电性能强、表面...  相似文献   

6.
7.
王心蕊  程慧敏  唐丽萍  李丽  闫东鹏 《应用化学》2018,35(10):1166-1173
二维层状离子型纳米材料具有独特的结构和界面性能,使其在透皮吸收、防晒、活性物的靶向传递、构建稳定的纳米微胶囊等功效中显示出极大的优势,在化妆品行业中具有良好的市场前景。 该类化合物根据层板电荷不同可分为阳离子型粘土材料和阴离子型水滑石类材料。 基于近年来国内外对二者的研究报道和实验研究成果,本文综述了二维离子型纳米材料的特点、性能及其在化妆品领域的应用历史和发展现状,并进一步展望了该类材料在化妆品领域中的应用前景。  相似文献   

8.
二维(2D)层状石墨型氮化碳纳米片(CNNS)由于具有各向异性的2D几何形态和芳香族p-π共轭骨架,高度开放的平面结构、超高的比表面积、增强的电子迁移速率和与层厚度相关可调的半导体带隙等特征,是目前2D层状材料的研究热点之一。 本文综述了近年来氮化碳纳米片的各种制备方法、功能化改性和应用,涉及环保、能源转换及生物传感等领域。 最后指出进一步探索制备高质量氮化碳纳米片的新方法以及拓展其在光催化领域的应用是未来研究的重点。  相似文献   

9.
环境友好型半导体光催化是当前最具前景的光催化技术之一,它不仅能够将太阳能转化为化学能以解决能源危机,还可以将污染物降解矿化从而解决环境问题.但是,传统的半导体光催化剂受限于光利用率低、光生载流子复合率高、稳定性较差等几个方面,无法达到理想的光催化效果.在半导体光催化剂上负载助催化剂是提升光催化效率的有效策略之一.负载助催化剂能够增强光生电荷在半导体与助催化剂界面间的传输,提供额外的催化活性位点,增强光捕获能力,因而被广泛应用于光催化剂的改性.目前广泛使用的贵金属助催化剂包括Au,Ag,Pt,Ru等,虽然这些贵金属助催化剂性能优异,但是它们存在储量少和成本高的问题,严重影响其规模化应用.因此,开展高效且成本低廉的非贵金属助催化剂的研究非常必要.近来,一种新型二维过渡金属材料(MXene)因其具有独特的二维层状结构、优异的导电性能、出色的光学和热力学性质而成为催化领域的研究热点.本文综述了有关非贵金属助催化剂MXene在光催化领域的最新研究进展,内容包括:(1)MXene材料的体相与表面结构特性;(2)薄层MXene的制备方法,例如氢氟酸刻蚀法、氢氟酸替代物刻蚀法以及熔融氟盐刻蚀法;(3)MXene基复合光催化剂的合成及改性策略,包括机械混合、自组装、原位氧化等;(4)MXene辅助增强光催化活性机理.论文还重点介绍了MXene作为助催化剂在光催化领域中的应用,包括光催化分解水产氢、光催化CO2还原、光催化固氮以及有机污染物的光催化降解.最后,论文分析了MXene基异质结光催化剂存在的问题与面临的挑战,并对MXene助催化剂的未来发展进行了展望.主要观点包括:(1)关于光催化分解水、空气净化、合成氨领域的研究较少,需要进一步开展;(2)MXene基异质结光催化剂的反应机理仍存在争议,需采用现代化仪器设备(包括原位表征技术)对其进行更为深入的探究;(3)目前,大多数MXene材料的制备都是通过强腐蚀性的氢氟酸或氢氟酸替代物刻蚀,开发环境友好且高效的MXene制备方法迫在眉睫;(4)阐明MXene表面终端基团的作用有助于提升MXene基复合光催化剂的性能;(5)引入新的改性策略如局域表面等离子体共振效应(LSPR)、缺陷调控、单原子催化(SAC)等来提高MXene基光催化剂的催化性能,是未来MXene基复合催化剂的发展方向.  相似文献   

10.
刘欢  马宇  曹斌  朱奇珍  徐斌 《物理化学学报》2023,39(5):2210027-0
水系锌离子电池(AZIBs)作为一种低成本、高安全的新兴且前景广阔的储能技术近年来备受关注。新型MXenes材料由于其独特的结构特征和物理化学性质,如易调节的二维结构、优异的导电性、化学组成多样和可控的表面化学特性,在AZIBs中表现出独特的应用优势。本文全面综述近年来MXenes在AZIBs中应用的研究进展,探讨MXenes应用于AZIBs正负极的结构设计及性能优化策略:在正极方面,MXenes可直接作为活性物质或活性物质前驱体、基体材料,以获得高活性、优异的循环寿命和倍率性能;在负极方面,MXenes可作为锌沉积的二维/三维载体、亲锌基体及锌金属界面保护层,以减缓电化学反应过程中锌金属的腐蚀和枝晶生长。此外,本文也对MXenes基材料在AZIBs中应用的发展方向进行展望。  相似文献   

11.
Due to their unique layered microstructure, the presence of various functional groups at the surface, earth abundance, and attractive electrical, optical, and thermal properties, MXenes are considered promising candidates for the solution of energy- and environmental-related problems. It is seen that the energy conversion and storage capacity of MXenes can be enhanced by changing the material dimensions, chemical composition, structure, and surface chemistry. Hence, it is also essential to understand how one can easily improve the structure–property relationship from an applied point of view. In the current review, we reviewed the fabrication, properties, and potential applications of MXenes. In addition, various properties of MXenes such as structural, optical, electrical, thermal, chemical, and mechanical have been discussed. Furthermore, the potential applications of MXenes in the areas of photocatalysis, electrocatalysis, nitrogen fixation, gas sensing, cancer therapy, and supercapacitors have also been outlooked. Based on the reported works, it could easily be observed that the properties and applications of MXenes can be further enhanced by applying various modification and functionalization approaches. This review also emphasizes the recent developments and future perspectives of MXenes-based composite materials, which will greatly help scientists working in the fields of academia and material science.  相似文献   

12.
The increasing demand for high-performance rechargeable energy storage systems has stimulated the exploration of advanced electrode materials. MXenes are a class of two-dimensional (2D) inorganic transition metal carbides/nitrides, which are promising candidates in electrodes. The layered structure facilitates ion insertion/extraction, which offers promising electrochemical characteristics for electrochemical energy storage. However, the low capacity accompanied by sluggish electrochemical kinetics of electrodes as well as interlayer restacking and collapse significantly impede their practical applications. Recently, interlayer space engineering of MXenes by different chemical strategies have been widely investigated in designing functional materials for various applications. In this review, an overview of the most recent progress of 2D MXenes engineering by intercalation, surface modification as well as heterostructures design is provided. Moreover, some critical challenges in future research on MXene-based electrodes have been also proposed.  相似文献   

13.
《中国化学快报》2020,31(4):969-979
The geometrically multiplied development of 2D MXenes has already promoted the prosperity of various fields of scientific researches especially but not limited in energy storage and conversion.Notably,cation intercalation can improve the interlayer spacing of MXenes resulting in tunable physical and chemical properties.Moreover,the synchrotron radiation X-ray characterizations have also shown high potential on exploring the property and structu re of cation intercalated MXe nes.This review is mainly focused on the recent achievements of cation intercalated MXenes through different methods on energy storage systems.Synchrotron-based X-ray absorption spectroscopic characterizations are emphasized to probe the local coordination and electronic structure in intercalated MXenes.The outlook of cation intercalation on MXenes and their applications are also discus sed.  相似文献   

14.
Two-dimensional (2D) transition metal dichalcogenides (TMDs), a rising star in the post-graphene era, are fundamentally and technologically intriguing for photocatalysis. Their extraordinary electronic, optical, and chemical properties endow them as promising materials for effectively harvesting light and catalyzing the redox reaction in photocatalysis. Here, we present a tutorial-style review of the field of 2D TMDs for photocatalysis to educate researchers (especially the new-comers), which begins with a brief introduction of the fundamentals of 2D TMDs and photocatalysis along with the synthesis of this type of material, then look deeply into the merits of 2D TMDs as co-catalysts and active photocatalysts, followed by an overview of the challenges and corresponding strategies of 2D TMDs for photocatalysis, and finally look ahead this topic.  相似文献   

15.
崔苗苗  宋安宁  钱阿妞 《化学通报》2023,86(10):1154-1163
微型超级电容器(Micro-supercapacitors,MSCs)作为便携、可穿戴、可植入的微型能量存储单元,因高功率密度、瞬间充放电及长循环寿命的优势,在柔性微型电化学储能技术中取得了快速发展。MXene基气凝胶材料因其三维多孔网状结构、优越导电性、亲水性等优势,能够缩短离子传输路径与提高电荷转移效率,在构建柔性MSCs中发挥重要作用,如活性电极材料、柔性导电集流体、油墨印刷等。然而,开发低价、高效、高性能的柔性MSCs器件仍面临诸多挑战。三维(3D)打印能够构建几何形状复杂的3D结构,制造不同尺寸和形状的微型储能器件。为了优化其电化学性能,分别对3D打印技术分类及其最新进展、可打印MXenes材料的设计原理研究进行了综述,总结了它们在与可穿戴电子设备集成MSCs设备中的应用。并对MXenes材料在解决3D打印MSCs的挑战性问题与发展前景做出展望。  相似文献   

16.
通过半导体催化剂利用太阳能分解水制氢被认为是解决人类面临的环境问题和能源危机的有效途径.在众多的半导体光催化剂中,TiO2由于其良好的光化学稳定性、无毒性、丰富的形貌以及低廉的价格,在光催化制氢领域备受关注.然而TiO2的内在缺陷,如较宽的带隙、较窄的光响应范围,光生电子空穴对的快速复合,极大限制了其太阳能制氢效率.构建异质结结构被认为是解决以上问题的一个有效方法,通过将TiO2与另一个半导体复合可以提升催化剂对太阳光的吸收范围,也可降低光生电子空穴对的复合速率.但构建一个成功的异质结结构不仅要满足上述的要求,还需要保留异质结催化剂体系中光生电子和空穴的氧化还原能力.研究表明,S型异质结是将两个具有合适能带结构的半导体进行耦合,由于费米能级的差异,两个半导体间将发生电子转移,从而引起能带弯曲并形成内建电场.光照条件下,具有较弱还原能力的光生电子在内建电场和能带弯曲的作用下与较弱氧化能力的光生空穴复合,实现异质结催化剂体系中各个半导体内部光生载流子有效分离的目标,同时保留了异质结催化剂体系中较强氧化能力和较强还原能力的光生电子和空穴,进而实现光催化活性的提高.本文采用水热合成方法,将具有更强还原能力和可见光响应特性的半导体(ZnIn2S4)原位生长在TiO2纳米纤维表面,构建了1D/2DTiO2/ZnIn2S4S型异质结光催化剂.最优比例的TiO2/ZnIn2S4复合材料表现出优越的光催化制氢活性(6.03mmol/h/g),分别是纯TiO2和纯ZnIn2S4制氢活性的3.7倍和2倍.TiO2/ZnIn2S4复合材料光催化活性的提高可以归因于紧密的异质结界面、光生载流子的有效分离、丰富的反应活性位点以及增强的光吸收能力.通过原位XPS和DFT计算研究了异质结内部光生电子的转移机制.结果表明,在光照条件下电子由TiO2向ZnIn2S4迁移,遵循了S型异质结内部电子的转移机制,实现了TiO2和ZnIn2S4内部光生载流子的有效分离,同时保留了具有较强还原能力的ZnIn2S4价带电子和较强氧化能力的TiO2导带空穴,从而显著提升光催化制氢效率.综上,本文制备的TiO2/ZnIn2S4S型异质结光催化剂很好地克服了TiO2在光催化制氢领域所面临的诸多障碍,为设计和制备高效异质结光催化剂提供了新的思路.  相似文献   

17.
Two-dimensional metal–organic frameworks (2D MOFs) can be used as the cathodes for high-performance zinc-ion battery due to their large one-dimensional channels. However, the conventionally poor electrical conductivity and low structural stability hinder their advances. Herein, we report an alternately stacked MOF/MX heterostructure, exhibiting the 2D sandwich-like structure with abundant active sites, improved electrical conductivity and exceptional structural stability. Ex situ characterizations and theoretical calculations reveal a reversible intercalation mechanism of zinc ions and high electrical conductivity in the 2D heterostructure. Electrochemical tests confirm excellent Zn2+ migration kinetics and ideal pseudocapacitive behaviors. As a consequence, Cu-HHTP/MX shows a superior rate performance (260.1 mAh g−1 at 0.1 A g−1 and 173.1 mAh g−1 at 4 A g−1) and long-term cycling stability of 92.5 % capacity retention over 1000 cycles at 4 A g−1.  相似文献   

18.
The threat and global concern of energy crises have significantly increased over the last two decades. Because solar light and water are abundant on earth, photocatalytic hydrogen evolution through water splitting has been considered as a promising route to produce green energy. Therefore, semiconductor photocatalysts play a key role in transforming sunlight and water to hydrogen energy. To date, various photocatalysts have been studied. Among them, TiO2 has been extensively investigated because of its non-toxicity, high chemical stability, controllable morphology, and high photocatalytic activity. In particular, 1D TiO2 nanofibers (NFs) have attracted increasing attention as effective photocatalysts because of their unique 1D electron transfer pathway, high adsorption capacity, and high photoinduced electron–hole pair transfer capability. However, TiO2 NFs are considered as an inefficient photocatalyst for the hydrogen evolution reaction (HER) because of their disadvantages such as a large band gap (~3.2 eV) and fast recombination of photoinduced electron–hole pairs. Therefore, the development of a high-performance TiO2 NF photocatalyst is required for efficient solar light conversion. In recent years, several strategies have been explored to improve the photocatalytic activity of TiO2 NFs, including coupling with narrow-bandgap semiconductors (such as ZnIn2S4). Recently, microwave (MW)-assisted synthesis has been considered as an important strategy for the preparation of photocatalyst semiconductors because of its low cost, environment-friendliness, simplicity, and high reaction rate. Herein, to overcome the above-mentioned limiting properties of TiO2 NFs, we report a 2D/1D ZnIn2S4/TiO2 S-scheme heterojunction synthesized through a microwave (MW)-assisted process. Herein, the 2D/1D ZnIn2S4/TiO2 S-scheme heterojunction was constructed rapidly by using in situ 2D ZnIn2S4nanosheets decorated on 1D TiO2 NFs. The loading of ZnIn2S4 nanoplates on the TiO2 NFs could be easily controlled by adjusting the molar ratios of ZnIn2S4 precursors to TiO2 NFs. The photocatalytic activity of the as-prepared samples for water splitting under simulated solar light irradiation was assessed. The experimental results showed that the photocatalytic performance of the ZnIn2S4/TiO2 composites was significantly improved, and the obtained ZnIn2S4/TiO2 composites showed increased optical absorption. Under optimal conditions, the highest HER rate of the ZT-0.5 (molar ratio of ZnIn2S4/TiO2= 0.5) sample was 8774 μmol·g-1·h-1, which is considerably higher than those of pure TiO2 NFs (3312 μmol·g-1·h-1) and ZnIn2S4nanoplates (3114 μmol·g-1·h-1) by factors of 2.7 and 2.8, respectively. Based on the experimental data and Mott-Schottky analysis, a possible mechanism for the formation of the S-scheme heterojunction between ZnIn2S4 and TiO2 was proposed to interpret the enhanced HER activity of the ZnIn2S4/TiO2heterojunctionphotocatalysts.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号